AstaPure® Haematococcus pluvialis microalgae extract (3% astaxanthin)

ASTAPURE® COMMON NAME

Astaxanthin

TOP BENEFITS OF ASTAPURE ®

Supports skin health*
Supports eye health*
Supports cognitive function*
Supports general immune health*
Supports sleep*

WHAT IS ASTAPURE® ?

AstaPure® is a branded Haematococcus pluvialis microalgae extract standardized for astaxanthin content. This algae is used because H. pluvialis is the most concentrated natural source of astaxanthin. Astaxanthin is one member in a class of pigments called carotenoids—carotenoids are fat-soluble yellow, orange, or red pigments. Astaxanthin is on the reddish end of the carotenoid pigment color continuum and is produced by some freshwater and marine algae and microorganisms. It is the pigment that gives salmon and crustaceans (i.e. shrimp, crab, lobster, and crayfish) an orange-red color, and flamingos their characteristic pink coloration. These organisms, like humans, are unable to make the astaxanthin themselves; they consume it in the aquatic food chain. Astaxanthin is a plant defense compound, in other words, more of it is made when the environment is stressful to protect a microalgae like H. pluvialis from, for example, intense UV radiation from sunlight. Since it is fat-soluble, astaxanthin is active in places with high lipid content, where it’s a powerful antioxidant. These places include cell membranes (which have a lipid bilayer), mitochondria, and the brain and nervous system. One of the things that make astaxanthin fairly unique, even compared to other carotenoids, is that its shape allows it to stabilize and protect lipid membranes. There is a growing body of research on astaxanthin for cognitive function support, immune system support, skin health, vision and other areas of wellness and performance. Its chemical structure allows it to readily cross the blood-brain barrier (BBB) and accumulate in the brain[1,2].

NEUROHACKER’S ASTAPURE® SOURCING

AstaPure® Haematococcus pluvialis microalgae extract contains not less than 3% Natural Astaxanthin Complex (as 3S, 3'S enantiomers). It also contains the full-spectrum of other nutrients that occur in this fresh water microalgae including essential fatty acids, dietary fibers, polysaccharides, vitamins, and minerals.

AstaPure® Haematococcus pluvialis microalgae extract is produced by Algatechnologies Ltd (i.e., Algatech) on a kibbutz in the Arava desert region in Israel.

AstaPure® Haematococcus pluvialis microalgae extract is grown sustainably using green technology including solar energy and advanced water recycling technologies to minimize environmental impact.

AstaPure® Haematococcus pluvialis microalgae extract is Non-GMO, Vegan and self-affirmed GRAS (Generally Recognized As Safe).

AstaPure® is a registered trademark of Algatechnologies Ltd.

ASTAPURE® DOSING PRINCIPLES AND RATIONALE

While a wide range of doses of astaxanthin have been used in studies, the most common dosing range is 1-12 mg and functional benefits have been reported even at the lower end of this range. One of our dosing principles is to determine whether there is a dosing range, in which many of the benefits occur and above which there appears to be diminishing returns (i.e., a threshold), and to provide a dose within this threshold range (see Neurohacker Dosing Principles). We consider astaxanthin to be one of these threshold compounds, because many of the benefits appear to occur at a low dose, and in some functional areas a worse response may occur at higher doses. As an example, in a comparative 8-week study in young, healthy females, a lower dose of 2 mg per day produced healthier plasma C-reactive protein and DNA protection responses than a higher dose of 8 mg. The lower dose also was able to produce almost the same blood levels of astaxanthin as the higher dose[3]. Because astaxanthin is fat-soluble, and like other fat-soluble compounds, accumulates over time, lower amounts may also be preferred when it will be given over extended periods of time. For an ingredient like astaxanthin, which has been studied in a variety of areas, the dose selected will also be influenced by what the formula is trying to accomplish. In other words, if the product is intended for skin health, the dose range would be based strongly on human skin studies of astaxanthin. If the formula is for another application, the dose selected could vary. And lastly, when determining dose, we also consider whether we are using, or plan to use, an ingredient in another product. It’s important to us to ensure that a user taking several of our products will not inadvertently take too much of an ingredient like astaxanthin. Because of its wide range of benefits, we plan on having it in more products over time, which also influences our dosage selection.

ASTAPURE® KEY MECHANISMS

Brain function
Supports learning and memory[4–8]
Supports sleep[9,10]
Supports brain-derived neurotrophic factor (BDNF)[11–16]
Supports hippocampal neurogenesis[6]
Down-regulates acetylcholinesterase (AChE) activity[17]
Supports neural stem cells[18,19]
Supports neuroprotective functions[17,20–26]
Supports brain antioxidant defenses[11,21,25]
Supports neural mitochondrial function[21,26,27]
Modulates GSK-3β signaling[26]

Antioxidant defenses
Supports total antioxidant capacity[11,28]
Supports free radical scavenging[29]
Counters ROS production and oxidative stress[30–32]
Protects DNA from oxidative damage[3,11,30]
Protects lipids from oxidative damage[11,25,28,33–35]
Supports antioxidant enzyme levels (SOD, GPx, CAT)[11,25,28,30,34,36]
Replenishes GSH[11,25,34]
Supports Nrf2 signaling[26,36–39]
Supports phase II detox enzymes[26,38–40]

Eye health
Supports visual acuity / visual function[41]
Alleviates eye-strain/fatigue[42]
Supports accommodation — focus adjustments between near and far objects[42]
Supports visual reaction time[43]
Supports optic nerve and retinal cell protective functions[30,36,44,45]
Protects against retinal oxidative stress[44,45]
Protects from light-induced retinal damage[32]
Supports ocular blood flow[46]

Immune Support
Supports innate immunity[3,47]
Supports adaptive immunity[3,47–51]
Supports intestinal immune functions[52]
Supports Th1/TH2 balance[53,54]

Skin health
Supports skin moisture, texture and elasticity[55,56]
May help reduce the appearance of fine lines[56,57]
Supports against skin photoaging[55,58–61]
Supports skin rejuvenation[62]

Healthy aging and longevity
Supports mitochondrial function[63–65]
Supports stem cells[18,19,39,66,67]
Supports heart and metabolic health[68,69]

Mood and stress response
Supports a positive mental-emotional bias[70,71]
Reduces fatigue[70]

Gut microbiota
Regulates the composition of the gut microbiota[72–74]

Synergies
With sesamin (from sesame seed extracts) in supporting cognitive function [75] and recovery from mental fatigue[76]
With collagen for skin health[77]
With gotu kola for skin health[78]


REFERENCES

[1] B. Grimmig, S.-H. Kim, K. Nash, P.C. Bickford, R. Douglas Shytle, Geroscience 39 (2017) 19–32.
[2] Y. Manabe, T. Komatsu, S. Seki, T. Sugawara, Biosci. Biotechnol. Biochem. 82 (2018) 1433–1436.
[3] J.S. Park, J.H. Chyun, Y.K. Kim, L.L. Line, B.P. Chew, Nutr. Metab. 7 (2010) 18.
[4] T. Sekikawa, Y. Kizawa, Y. Li, T. Takara, Pharmacometrics 97 (2019) 1–13.
[5] M. Hayashi, T. Ishibashi, T. Maoka, Journal of Clinical Biochemistry and Nutrition 62 (2018) 195–205.
[6] J.S. Yook, M. Okamoto, R. Rakwal, J. Shibato, M.C. Lee, T. Matsui, H. Chang, J.Y. Cho, H. Soya, Mol. Nutr. Food Res. 60 (2016) 589–599.
[7] A. Satoh, S. Tsuji, Y. Okada, N. Murakami, M. Urami, K. Nakagawa, M. Ishikura, M. Katagiri, Y. Koga, T. Shirasawa, J. Clin. Biochem. Nutr. 44 (2009) 280–284.
[8] M. Katagiri, A. Satoh, S. Tsuji, T. Shirasawa, J. Clin. Biochem. Nutr. 51 (2012) 102–107.
[9] H. Saito, Y. Cherasse, R. Suzuki, M. Mitarai, F. Ueda, Y. Urade, Molecular Nutrition & Food Research 61 (2017) 1600882.
[10] M. Hayashi, M. Kawamura, Y. Kawashima, T. Uemura, T. Maoka, J. Clin. Biochem. Nutr. 66 (2020) 92–102.
[11] W. Wu, X. Wang, Q. Xiang, X. Meng, Y. Peng, N. Du, Z. Liu, Q. Sun, C. Wang, X. Liu, Food Funct. 5 (2014) 158–166.
[12] Y. Ke, S. Bu, H. Ma, L. Gao, Y. Cai, Y. Zhang, W. Zhou, Front. Pharmacol. 10 (2019) 1621.
[13] Y. Lu, X. Wang, J. Feng, T. Xie, P. Si, W. Wang, Brain Res. Bull. 148 (2019) 63–69.
[14] K.M. Damodara Gowda, N. Suchetha Kumari, H. Ullal, Nutr. Neurosci. 23 (2020) 422–431.
[15] Y. Nai, H. Liu, X. Bi, H. Gao, C. Ren, Hum. Exp. Toxicol. 37 (2018) 929–936.
[16] X. Ji, D. Peng, Y. Zhang, J. Zhang, Y. Wang, Y. Gao, N. Lu, P. Tang, Brain Res. 1659 (2017) 88–95.
[17] S.E. El-Agamy, A.K. Abdel-Aziz, S. Wahdan, A. Esmat, S.S. Azab, Mol. Neurobiol. 55 (2018) 5727–5740.
[18] J.-H. Kim, S.-W. Nam, B.-W. Kim, W. Choi, J.-H. Lee, W.-J. Kim, Y.-H. Choi, Int. J. Mol. Sci. 11 (2010) 5109–5119.
[19] J.H. Kim, S.-W. Nam, B.W. Kim, W.-J. Kim, Y.H. Choi, Food Chem. Toxicol. 48 (2010) 1741–1745.
[20] B. Grimmig, L. Daly, M. Subbarayan, C. Hudson, R. Williamson, K. Nash, P.C. Bickford, Oncotarget 9 (2018) 10388–10401.
[21] D.-H. Lee, C.-S. Kim, Y.J. Lee, Food Chem. Toxicol. 49 (2011) 271–280.
[22] X. Zhou, F. Zhang, X. Hu, J. Chen, X. Wen, Y. Sun, Y. Liu, R. Tang, K. Zheng, Y. Song, Physiol. Behav. 151 (2015) 412–420.
[23] L. Pan, Y. Zhou, X.-F. Li, Q.-J. Wan, L.-H. Yu, Brain Res. Bull. 130 (2017) 211–220.
[24] X.-S. Zhang, X. Zhang, Q. Wu, W. Li, C.-X. Wang, G.-B. Xie, X.-M. Zhou, J.-X. Shi, M.-L. Zhou, J. Surg. Res. 192 (2014) 206–213.
[25] Y. Xue, Z. Qu, J. Fu, J. Zhen, W. Wang, Y. Cai, W. Wang, Brain Res. Bull. 131 (2017) 221–228.
[26] X. Wen, A. Huang, J. Hu, Z. Zhong, Y. Liu, Z. Li, X. Pan, Z. Liu, Neuroscience 303 (2015) 558–568.
[27] X. Liu, T. Shibata, S. Hisaka, T. Osawa, Brain Res. 1254 (2009) 18–27.
[28] H.D. Choi, J.H. Kim, M.J. Chang, Y. Kyu-Youn, W.G. Shin, Phytother. Res. 25 (2011) 1813–1818.
[29] J. Dose, S. Matsugo, H. Yokokawa, Y. Koshida, S. Okazaki, U. Seidel, M. Eggersdorfer, G. Rimbach, T. Esatbeyoglu, Int. J. Mol. Sci. 17 (2016).
[30] L.-Y. Dong, J. Jin, G. Lu, X.-L. Kang, Mar. Drugs 11 (2013) 960–974.
[31] H. Hashimoto, K. Arai, S. Hayashi, H. Okamoto, J. Takahashi, M. Chikuda, Y. Obara, J. Clin. Biochem. Nutr. 53 (2013) 1–7.
[32] T. Otsuka, M. Shimazawa, T. Nakanishi, Y. Ohno, Y. Inoue, K. Tsuruma, T. Ishibashi, H. Hara, J. Pharmacol. Sci. 123 (2013) 209–218.
[33] K. Nakagawa, T. Kiko, T. Miyazawa, G. Carpentero Burdeos, F. Kimura, A. Satoh, T. Miyazawa, Br. J. Nutr. 105 (2011) 1563–1571.
[34] M.M. Al-Amin, S. Akhter, A.T. Hasan, T. Alam, S.M. Nageeb Hasan, A.R.M. Saifullah, M. Shohel, Metab. Brain Dis. 30 (2015) 1237–1246.
[35] J. Karppi, T.H. Rissanen, K. Nyyssönen, J. Kaikkonen, A.G. Olsson, S. Voutilainen, J.T. Salonen, Int. J. Vitam. Nutr. Res. 77 (2007) 3–11.
[36] W.-N. Lin, K. Kapupara, Y.-T. Wen, Y.-H. Chen, I.-H. Pan, R.-K. Tsai, Mar. Drugs 18 (2020).
[37] H. Kubo, K. Asai, K. Kojima, A. Sugitani, Y. Kyomoto, A. Okamoto, K. Yamada, N. Ijiri, T. Watanabe, K. Hirata, T. Kawaguchi, Mar. Drugs 17 (2019).
[38] Q. Ye, B. Huang, X. Zhang, Y. Zhu, X. Chen, BMC Neurosci. 13 (2012) 156.
[39] X.-L. Xue, X.-D. Han, Y. Li, X.-F. Chu, W.-M. Miao, J.-L. Zhang, S.-J. Fan, Stem Cell Res. Ther. 8 (2017) 7.
[40] D.-H. Lee, Y.J. Lee, K.H. Kwon, J. Clin. Biochem. Nutr. 47 (2010) 121–129.
[41] S. Piermarocchi, S. Saviano, V. Parisi, M. Tedeschi, G. Panozzo, G. Scarpa, G. Boschi, G. Lo Giudice, Carmis Study Group, Eur. J. Ophthalmol. 22 (2012) 216–225.
[42] Y. Nagaki, H. Tsukahara, T. Yoshimoto, K. Masuda, Folia Ophthalomogica Japonica. 5 (2010) 461–468.
[43] Y. Seya, J. Takahashi, K. Imanaka, Japanese Journal of Physiological Anthropology 14 (2009) 59–66.
[44] A. Cort, N. Ozturk, D. Akpinar, M. Unal, G. Yucel, A. Ciftcioglu, P. Yargicoglu, M. Aslan, Regul. Toxicol. Pharmacol. 58 (2010) 121–130.
[45] P.-T. Yeh, H.-W. Huang, C.-M. Yang, W.-S. Yang, C.-H. Yang, PLoS One 11 (2016) e0146438.
[46] M. Saito, K. Yoshida, W. Saito, A. Fujiya, K. Ohgami, N. Kitaichi, H. Tsukahara, S. Ishida, S. Ohno, Graefes Arch. Clin. Exp. Ophthalmol. 250 (2012) 239–245.
[47] B.P. Chew, B.D. Mathison, M.G. Hayek, S. Massimino, G.A. Reinhart, J.S. Park, Vet. Immunol. Immunopathol. 140 (2011) 199–206.
[48] I. Baralic, M. Andjelkovic, B. Djordjevic, N. Dikic, N. Radivojevic, V. Suzin-Zivkovic, S. Radojevic-Skodric, S. Pejic, Evid. Based. Complement. Alternat. Med. 2015 (2015) 783761.
[49] J.S. Park, B.D. Mathison, M.G. Hayek, S. Massimino, G.A. Reinhart, B.P. Chew, Vet. Immunol. Immunopathol. 144 (2011) 455–461.
[50] H. Jyonouchi, S. Sun, Y. Tomita, M.D. Gross, J. Nutr. 125 (1995) 2483–2492.
[51] H. Jyonouchi, S. Sun, M. Mizokami, M.D. Gross, Nutr. Cancer 26 (1996) 313–324.
[52] L. Zhang, W. Cao, Y. Gao, R. Yang, X. Zhang, J. Xu, Q. Tang, Food Funct. 11 (2020) 3371–3381.
[53] S. Davinelli, H.M. Melvang, L.P. Andersen, G. Scapagnini, M.E. Nielsen, Mar. Drugs 17 (2019).
[54] Y.-H. Hwang, S.-G. Hong, S.-K. Mun, S.-J. Kim, S.-J. Lee, J.-J. Kim, K.-Y. Kang, S.-T. Yee, Molecules 22 (2017).
[55] N. Ito, S. Seki, F. Ueda, Nutrients 10 (2018) 817.
[56] K. Tominaga, N. Hongo, M. Fujishita, Y. Takahashi, Y. Adachi, J. Clin. Biochem. Nutr. 61 (2017) 33–39.
[57] K. Tominaga, N. Hongo, M. Karato, E. Yamashita, Acta Biochim. Pol. 59 (2012) 43–47.
[58] Q.X. Ng, M.L.Z.Q. De Deyn, W. Loke, N.X. Foo, H.W. Chan, W.S. Yeo, J. Diet. Suppl. (2020) 1–14.
[59] X. Li, T. Matsumoto, M. Takuwa, M. Saeed Ebrahim Shaiku Ali, T. Hirabashi, H. Kondo, H. Fujino, Biomedicines 8 (2020).
[60] J. Shin, J.-E. Kim, K.-J. Pak, J.I. Kang, T.-S. Kim, S.-Y. Lee, I.-H. Yeo, J.H.Y. Park, J.H. Kim, N.J. Kang, K.W. Lee, Int. J. Mol. Sci. 18 (2017).
[61] T. Komatsu, S. Sasaki, Y. Manabe, T. Hirata, T. Sugawara, PLoS One 12 (2017) e0171178.
[62] N.E. Chalyk, V.A. Klochkov, T.Y. Bandaletova, N.H. Kyle, I.M. Petyaev, Nutr. Res. 48 (2017) 40–48.
[63] S.H. Kim, H. Kim, Nutrients 10 (2018).
[64] A.M. Wolf, S. Asoh, H. Hiranuma, I. Ohsawa, K. Iio, A. Satou, M. Ishikura, S. Ohta, J. Nutr. Biochem. 21 (2010) 381–389.
[65] J.S. Park, B.D. Mathison, M.G. Hayek, J. Zhang, G.A. Reinhart, B.P. Chew, J. Anim. Sci. 91 (2013) 268–275.
[66] N. Ghasemi, Avicenna J. Med. Biotechnol. 10 (2018) 69–74.
[67] H. Yaghooti, N. Mohammadtaghvaei, K. Mahboobnia, Int. Immunopharmacol. 68 (2019) 164–170.
[68] N.S. Mashhadi, M. Zakerkish, J. Mohammadiasl, M. Zarei, M. Mohammadshahi, M.H. Haghighizadeh, Asia Pac. J. Clin. Nutr. 27 (2018) 341–346.
[69] H. Yoshida, H. Yanai, K. Ito, Y. Tomono, T. Koikeda, H. Tsukahara, N. Tada, Atherosclerosis 209 (2010) 520–523.
[70] S. Talbott, D. Hantla, B. Capelli, L. Ding, Y. Li, C. Artaria, EC Nutrition 14 (2019) 239–246.
[71] X.-Y. Zhou, F. Zhang, X.-T. Hu, J. Chen, R.-X. Tang, K.-Y. Zheng, Y.-J. Song, Brain Res. 1657 (2017) 262–268.
[72] H. Liu, M. Liu, X. Fu, Z. Zhang, L. Zhu, X. Zheng, J. Liu, Nutrients 10 (2018).
[73] J. Wang, S. Liu, H. Wang, S. Xiao, C. Li, Y. Li, B. Liu, Mar. Drugs 17 (2019).
[74] Y. Lyu, L. Wu, F. Wang, X. Shen, D. Lin, Exp. Biol. Med. 243 (2018) 613–620.
[75] N. Ito, H. Saito, S. Seki, F. Ueda, T. Asada, J. Alzheimers. Dis. 62 (2018) 1767–1775.
[76] A. Imai, Y. Oda, N. Ito, S. Seki, K. Nakagawa, T. Miyazawa, F. Ueda, Nutrients 10 (2018).
[77] H.-S. Yoon, H.H. Cho, S. Cho, S.-R. Lee, M.-H. Shin, J.H. Chung, J. Med. Food 17 (2014) 810–816.
[78] J.H. Park, I.J. Yeo, J.S. Jang, K.C. Kim, M.H. Park, H.P. Lee, S.B. Han, J.T. Hong, Allergy Asthma Immunol. Res. 11 (2019) 548–559.