Broccoli Sprout Powder


Broccoli Sprouts


  • Supports general immune health*
  • Supports antioxidant defenses*
  • Supports detoxification functions*


Broccoli sprouts (botanical name Brassica oleracea italica) are the first green shoots, emerging within several days after a broccoli seed has been germinated (i.e., sprouted). They are often described as being a superfood because they are high in fiber, protein, and other nutrients. Broccoli sprouts are known for being one of the richest sources of glucosinolates, especially glucoraphanin, the precursor to sulforaphane. These glucosinolate compounds are examples of plant defense compounds, which are produced by broccoli seeds and sprouts to better prepare them to respond to environmental stress. When humans consume broccoli sprouts, it’s thought that some of this stress-resilience is conferred. In other words, broccoli sprouts signal our cells to adapt in ways that support their defenses against stress. Sulforaphane has been the most studied of the glucosinolates. It is an Nrf2 activator—Nrf2 is a master regulator of cellular defenses and plays a role in supporting a healthy immune system.


Broccoli sprout powder is produced in the USA by Futureceuticals, a leader in fruit and vegetable extracts.

Broccoli sprout powder contains not less than 15,000 parts per million (ppm) glucosinolates, 10,000 ppm glucoraphanin, and 5,000 ppm sulforaphane potential.

Broccoli sprout powder is vegan, non-GMO, and gluten-free.


Since broccoli sprouts are food, we consider them to be amenable to a wide dosing range. The broccoli sprout powder we source is produced to concentrate glucoraphanin to a much greater extent than broccoli sprouts, so has enhanced sulforaphane potential. In human studies, broccoli sprout extracts have been supplemented in a very wide range of doses (about a 32-fold difference from the lowest to highest doses of glucoraphanin)[1]. We consider broccoli sprout powder that is more concentrated for sulforaphane potential to have a threshold range, where much of the health-related functional benefits occur within a lower to moderate dose range, and to have the potential for hormetic responses at high doses (see Neurohacker Dosing Principles). The role in a formulation will dictate the dose we include, but in general, when used for signaling support (such as in Qualia Immune), we’ll use a low dose. If used for another purpose, the dose would be selected to match the use case.


Cellular defenses

  • Supports Nrf-2 signaling[2–6]
  • Supports antioxidant defenses[7–12]
  • Supports detoxification functions[13,14]
  • Supports phase II detoxification enzymes (e.g., NQO1, GST, and HO1)[15–18]


  • Supports general immune health[19–22]
  • Supports innate immunity[2,20,22–29]
  • Supports adaptive immunity[2,23,26,28,30–34]
  • Supports cellular intrinsic immune defenses[32,35–41]
  • Supports mucosal immunity[3,34,42]
  • Supports immune tolerance[33,43–47]
  • Supports immune signaling[23,30,33,48]
  • Supports healthy dendritic cell function[2,48]
  • Supports healthy natural killer (NK) cell function[11,20,23,28]
  • Supports healthy macrophage function[22,24–29]
  • Supports healthy microglial function[4,49–55]
  • Supports healthy T cell function[2,30–33]
  • Supports healthy B cell function[23,26,34]
  • Supports immunity during aging[2]

Gut microbiota

  • Supports a healthy gut microbiota[34]
  • Supports gut microbial metabolism[34]

Healthy aging

  • Supports histone deacetylase inhibition[56,57]
  • Supports Nrf2[58–63]
  • Supports liver function[64]
  • Supports metabolic health[65]
  • Slows cellular senescence[66,67] 
  • Supports mitochondrial function[68–80]

Brain and Mood

  • Supports cognitive wellness[81,82]
  • Supports brain-derived neurotrophic factor (BDNF)[83,84]
  • Supports social cognition[85]
  • Supports healthy behavioral and cognitive responses to stress[86,87]


  • N-Acetyl-L-cysteine in support of cellular antioxidant defenses[88–90]
  • Curcumin in support of cellular defenses and immune signaling[91]


[1] Y. Yagishita, J.W. Fahey, A.T. Dinkova-Kostova, T.W. Kensler, Molecules 24 (2019).
[2] H.-J. Kim, B. Barajas, M. Wang, A.E. Nel, J. Allergy Clin. Immunol. 121 (2008) 1255–1261.e7.
[3] X. Fan, B.S. Staitieh, J.S. Jensen, K.J. Mould, J.A. Greenberg, P.C. Joshi, M. Koval, D.M. Guidot, Am. J. Physiol. Lung Cell. Mol. Physiol. 305 (2013) L267–77.
[4] S.J. Schachtele, S. Hu, J.R. Lokensgard, PLoS One 7 (2012) e36216.
[5] A.T. Dinkova-Kostova, J.W. Fahey, R.V. Kostov, T.W. Kensler, Trends Food Sci. Technol. 69 (2017) 257–269.
[6] L. Yang, D.L. Palliyaguru, T.W. Kensler, Semin. Oncol. 43 (2016) 146–153.
[7] L.M. Beaver, C.V. Lӧhr, J.D. Clarke, S.T. Glasser, G.W. Watson, C.P. Wong, Z. Zhang, D.E. Williams, R.H. Dashwood, J. Shannon, P. Thuillier, E. Ho, Curr Dev Nutr 2 (2018) nzy002.
[8] H. Nian, B. Delage, E. Ho, R.H. Dashwood, Environ. Mol. Mutagen. 50 (2009) 213–221.
[9] T. Mastuo, Y. Miyata, T. Yuno, Y. Mukae, A. Otsubo, K. Mitsunari, K. Ohba, H. Sakai, Molecules 25 (2020).
[10] P. Rajendran, W.-M. Dashwood, L. Li, Y. Kang, E. Kim, G. Johnson, K.A. Fischer, C.V. Löhr, D.E. Williams, E. Ho, M. Yamamoto, D.A. Lieberman, R.H. Dashwood, Clin. Epigenetics 7 (2015) 102.
[11] P.J. Amin, B.S. Shankar, Life Sci. 126 (2015) 19–27.
[12] E. Kubo, B. Chhunchha, P. Singh, H. Sasaki, D.P. Singh, Sci. Rep. 7 (2017) 14130.
[13] P.A. Egner, J.-G. Chen, A.T. Zarth, D.K. Ng, J.-B. Wang, K.H. Kensler, L.P. Jacobson, A. Munoz, J.L. Johnson, J.D. Groopman, J.W. Fahey, P. Talalay, J. Zhu, T.-Y. Chen, G.-S. Qian, S.G. Carmella, S.S. Hecht, T.W. Kensler, Cancer Prevention Research 7 (2014) 813–823.
[14] J.-G. Chen, J. Johnson, P. Egner, D. Ng, J. Zhu, J.-B. Wang, X.-F. Xue, Y. Sun, Y.-H. Zhang, L.-L. Lu, Y.-S. Chen, Y. Wu, Y.-R. Zhu, S. Carmella, S. Hecht, L. Jacobson, A. Muñoz, K. Kensler, A. Rule, J. Fahey, T. Kensler, J. Groopman, Am. J. Clin. Nutr. 110 (2019) 675–684.
[15] A.T. Dinkova-Kostova, W.D. Holtzclaw, R.N. Cole, K. Itoh, N. Wakabayashi, Y. Katoh, M. Yamamoto, P. Talalay, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 11908–11913.
[16] A.T. Dinkova-Kostova, J.W. Fahey, K.L. Wade, S.N. Jenkins, T.A. Shapiro, E.J. Fuchs, M.L. Kerns, P. Talalay, Cancer Epidemiol. Biomarkers Prev. 16 (2007) 847–851.
[17] S. Sikdar, M. Papadopoulou, J. Dubois, J. Cosmet. Dermatol. 15 (2016) 72–77.
[18] M.A. Riedl, A. Saxon, D. Diaz-Sanchez, Clin. Immunol. 130 (2009) 244–251.
[19] A. Yanaka, J.W. Fahey, A. Fukumoto, M. Nakayama, S. Inoue, S. Zhang, M. Tauchi, H. Suzuki, I. Hyodo, M. Yamamoto, Cancer Prev. Res. 2 (2009) 353–360.
[20] L. Müller, M. Meyer, R.N. Bauer, H. Zhou, H. Zhang, S. Jones, C. Robinette, T.L. Noah, I. Jaspers, PLoS One 11 (2016) e0147742.
[21] T.L. Noah, H. Zhang, H. Zhou, E. Glista-Baker, L. Müller, R.N. Bauer, M. Meyer, P.C. Murphy, S. Jones, B. Letang, C. Robinette, I. Jaspers, PLoS ONE 9 (2014) e98671.
[22] D. Heber, Z. Li, M. Garcia-Lloret, A.M. Wong, T.Y.A. Lee, G. Thames, M. Krak, Y. Zhang, A. Nel, Food Funct. 5 (2014) 35–41.

[23] P. Thejass, G. Kuttan, Immunopharmacol. Immunotoxicol. 28 (2006) 443–457.

[24] B.S. Staitieh, L. Ding, W.A. Neveu, P. Spearman, D.M. Guidot, X. Fan, J. Leukoc. Biol. 102 (2017) 517–525.

[25] M. Wu, J.G. Gibbons, G.M. DeLoid, A.S. Bedugnis, R.K. Thimmulappa, S. Biswal, L. Kobzik, Am. J. Physiol. Lung Cell. Mol. Physiol. 313 (2017) L138–L153.

[26] P. Thejass, G. Kuttan, Phytomedicine 14 (2007) 538–545.

[27] H. Suganuma, J.W. Fahey, K.E. Bryan, Z.R. Healy, P. Talalay, Biochem. Biophys. Res. Commun. 405 (2011) 146–151.

[28] Y.-L. Shih, L.-Y. Wu, C.-H. Lee, Y.-L. Chen, S.-C. Hsueh, H.-F. Lu, N.-C. Liao, J.-G. Chung, Mol. Med. Rep. 13 (2016) 4023–4029.

[29] S. Pal, V.B. Konkimalla, Int. Immunopharmacol. 35 (2016) 85–98.

[30] J.-S. Kong, S.-A. Yoo, H.-S. Kim, H.A. Kim, K. Yea, S.-H. Ryu, Y.-J. Chung, C.-S. Cho, W.-U. Kim, Arthritis Rheum. 62 (2010) 159–170.

[31] J.H. Park, J.W. Kim, C.-M. Lee, Y.D. Kim, S.W. Chung, I.D. Jung, K.T. Noh, J.W. Park, D.R. Heo, Y.K. Shin, J.K. Seo, Y.-M. Park, BMB Rep. 45 (2012) 311–316.

[32] S. Hushmendy, L. Jayakumar, A.B. Hahn, D. Bhoiwala, D.L. Bhoiwala, D.R. Crawford, Nutr. Res. 29 (2009) 568–578.

[33] J. Liang, B. Jahraus, E. Balta, J.D. Ziegler, K. Hübner, N. Blank, B. Niesler, G.H. Wabnitz, Y. Samstag, Front. Immunol. 9 (2018) 2584.

[34] C. He, L. Huang, P. Lei, X. Liu, B. Li, Y. Shan, Mol. Nutr. Food Res. 62 (2018) e1800427.

[35] C.-C. Wu, H.-Y. Chuang, C.-Y. Lin, Y.-J. Chen, W.-H. Tsai, C.-Y. Fang, S.-Y. Huang, F.-Y. Chuang, S.-F. Lin, Y. Chang, J.-Y. Chen, Molecular Carcinogenesis 52 (2013) 946–958.

[36] J.-N. Ho, E.-R. Kang, H.-G. Yoon, H. Jeon, W. Jun, R.R. Watson, J. Lee, Biosci. Biotechnol. Biochem. 75 (2011) 1234–1239.

[37] M.J. Kesic, S.O. Simmons, R. Bauer, I. Jaspers, Free Radic. Biol. Med. 51 (2011) 444–453.

[38] E. Wyler, V. Franke, J. Menegatti, C. Kocks, A. Boltengagen, S. Praktiknjo, B. Walch-Rückheim, J. Bosse, N. Rajewsky, F. Grässer, A. Akalin, M. Landthaler, Nat. Commun. 10 (2019) 4878.

[39] A.K.M. Furuya, H.J. Sharifi, R.M. Jellinger, P. Cristofano, B. Shi, C.M.C. de Noronha, PLoS Pathog. 12 (2016) e1005581.

[40] J.-S. Yu, W.-C. Chen, C.-K. Tseng, C.-K. Lin, Y.-C. Hsu, Y.-H. Chen, J.-C. Lee, PLoS One 11 (2016) e0152236.

[41] J. Shao, J. Huang, Y. Guo, L. Li, X. Liu, X. Chen, J. Yuan, Fish Shellfish Immunol. 58 (2016) 474–482.

[42] M. Schwab, V. Reynders, S. Loitsch, D. Steinhilber, O. Schröder, J. Stein, Immunology 125 (2008) 241–251.

[43] N. Banerjee, H. Wang, G. Wang, M.F. Khan, Toxicol. Sci. 175 (2020) 64–74.

[44] I.H. Yoo, M.J. Kim, J. Kim, J.J. Sung, S.T. Park, S.W. Ahn, J. Korean Med. Sci. 34 (2019) e197.

[45] D.V. Chartoumpekis, P.G. Ziros, J.-G. Chen, J.D. Groopman, T.W. Kensler, G.P. Sykiotis, Food Chem. Toxicol. 126 (2019) 1–6.

[46] J. Geisel, J. Brück, I. Glocova, K. Dengler, T. Sinnberg, O. Rothfuss, M. Walter, K. Schulze-Osthoff, M. Röcken, K. Ghoreschi, J. Immunol. 192 (2014) 3530–3539.

[47] B. Li, W. Cui, J. Liu, R. Li, Q. Liu, X.-H. Xie, X.-L. Ge, J. Zhang, X.-J. Song, Y. Wang, L. Guo, Exp. Neurol. 250 (2013) 239–249.

[48] X. Qu, M. Pröll, C. Neuhoff, R. Zhang, M.U. Cinar, M.M. Hossain, D. Tesfaye, C. Große-Brinkhaus, D. Salilew-Wondim, E. Tholen, C. Looft, M. Hölker, K. Schellander, M.J. Uddin, PLoS One 10 (2015) e0121574.

[49] R.R. Chilakala, A.L. Manchikalapudi, A. Kumar, A. Sunkaria, Neuroscience 429 (2020) 225–234.

[50] Y. Gong, X. Cao, L. Gong, W. Li, Int. J. Immunopathol. Pharmacol. 33 (2019) 2058738419861777.

[51] L. Subedi, K. Cho, Y.U. Park, H.J. Choi, S.Y. Kim, Oxid. Med. Cell. Longev. 2019 (2019) 3549274.

[52] V. Hernandez-Rabaza, A. Cabrera-Pastor, L. Taoro-Gonzalez, A. Gonzalez-Usano, A. Agusti, T. Balzano, M. Llansola, V. Felipo, J. Neuroinflammation 13 (2016) 83.

[53] V. Hernández-Rabaza, A. Cabrera-Pastor, L. Taoro-González, M. Malaguarnera, A. Agustí, M. Llansola, V. Felipo, J. Neuroinflammation 13 (2016) 41.

[54] B.E. Townsend, R.W. Johnson, Exp. Gerontol. 73 (2016) 42–48.

[55] B.E. Townsend, Y.-J. Chen, E.H. Jeffery, R.W. Johnson, Nutr. Res. 34 (2014) 990–999.

[56] E. Ho, J.D. Clarke, R.H. Dashwood, J. Nutr. 139 (2009) 2393–2396.

[57] K.M. Curran, S. Bracha, C.P. Wong, L.M. Beaver, J.F. Stevens, E. Ho, Vet Med Sci 4 (2018) 357–363.

[58] J.F. Doss, J.C. Jonassaint, M.E. Garrett, A.E. Ashley-Koch, M.J. Telen, J.-T. Chi, PLoS One 11 (2016) e0152895.

[59] R.H. Brown, C. Reynolds, A. Brooker, P. Talalay, J.W. Fahey, Respir. Res. 16 (2015) 106.

[60] C.A. Houghton, R.G. Fassett, J.S. Coombes, Oxid. Med. Cell. Longev. 2016 (2016) 7857186.

[61] Y. Bai, X. Wang, S. Zhao, C. Ma, J. Cui, Y. Zheng, Oxid. Med. Cell. Longev. 2015 (2015) 407580.

[62] M.S. Uddin, A.A. Mamun, M. Jakaria, S. Thangapandiyan, J. Ahmad, M.A. Rahman, B. Mathew, M.M. Abdel-Daim, L. Aleya, Sci. Total Environ. 707 (2020) 135624.

[63] M. Russo, C. Spagnuolo, G.L. Russo, K. Skalicka-Woźniak, M. Daglia, E. Sobarzo-Sánchez, S.F. Nabavi, S.M. Nabavi, Crit. Rev. Food Sci. Nutr. 58 (2018) 1391–1405.

[64] M. Kikuchi, Y. Ushida, H. Shiozawa, R. Umeda, K. Tsuruya, Y. Aoki, H. Suganuma, Y. Nishizaki, World J. Gastroenterol. 21 (2015) 12457–12467.

[65] Z. Bahadoran, M. Tohidi, P. Nazeri, M. Mehran, F. Azizi, P. Mirmiran, Int. J. Food Sci. Nutr. 63 (2012) 767–771.

[66] F. Zanichelli, S. Capasso, M. Cipollaro, E. Pagnotta, M. Cartenì, F. Casale, R. Iori, U. Galderisi, Age 34 (2012) 281–293.

[67] F. Hariton, M. Xue, N. Rabbani, M. Fowler, P.J. Thornalley, Oxid. Med. Cell. Longev. 2018 (2018) 5642148.

[68] F.R. Jardim, F.J.S. de Almeida, M.D. Luckachaki, M.R. de Oliveira, J. Zhejiang Univ. Sci. B 21 (2020) 263–279.

[69] C.-F. Lin, T.-H. Chueh, C.-H. Chung, S.-D. Chung, T.-C. Chang, C.-T. Chien, J. Formos. Med. Assoc. (2019).

[70] P. Lei, S. Tian, C. Teng, L. Huang, X. Liu, J. Wang, Y. Zhang, B. Li, Y. Shan, Mol. Nutr. Food Res. 63 (2019) e1800795.

[71] H.-Y. Cho, L. Miller-DeGraff, T. Blankenship-Paris, X. Wang, D.A. Bell, F. Lih, L. Deterding, V. Panduri, D.L. Morgan, M. Yamamoto, A.J. Reddy, P. Talalay, S.R. Kleeberger, Toxicol. Appl. Pharmacol. 364 (2019) 29–44.

[72] E. Tubbs, A.S. Axelsson, G. Vial, C.B. Wollheim, J. Rieusset, A.H. Rosengren, Mol. Cell. Endocrinol. 461 (2018) 205–214.

[73] C. Carrasco-Pozo, K.N. Tan, M. Gotteland, K. Borges, Oxid. Med. Cell. Longev. 2017 (2017) 3839756.

[74] M. Bi, Q. Li, D. Guo, X. Ding, W. Bi, Y. Zhang, Y. Zou, Basic Clin. Pharmacol. Toxicol. 120 (2017) 541–549.

[75] E.R. Luis-García, J.H. Limón-Pacheco, N. Serrano-García, A.D. Hernández-Pérez, J. Pedraza-Chaverri, M. Orozco-Ibarra, J. Biochem. Mol. Toxicol. 31 (2017).
[76] I.C. Lavich, B.S. de Freitas, L.W. Kist, L. Falavigna, V.A. Dargél, L.M. Köbe, C. Aguzzoli, B. Piffero, P.Z. Florian, M.R. Bogo, M.N.M. de Lima, N. Schröder, Neuroscience 301 (2015) 542–552.

[77] T. Greco, G. Fiskum, J. Bioenerg. Biomembr. 42 (2010) 491–497.

[78] D.K.D. Priya, R. Gayathri, G.R. Gunassekaran, D. Sakthisekaran, Pulm. Pharmacol. Ther. 24 (2011) 110–117.

[79] L. Xu, N. Nagata, T. Ota, Int. J. Mol. Sci. 20 (2019).

[80] A. Masci, R. Mattioli, P. Costantino, S. Baima, G. Morelli, P. Punzi, C. Giordano, A. Pinto, L.M. Donini, M. d’Erme, L. Mosca, Oxid. Med. Cell. Longev. 2015 (2015) 781938.

[81] A. Shiina, N. Kanahara, T. Sasaki, Y. Oda, T. Hashimoto, T. Hasegawa, T. Yoshida, M. Iyo, K. Hashimoto, Clin. Psychopharmacol. Neurosci. 13 (2015) 62–67.

[82] A. Matsuura, T. Ishima, Y. Fujita, Y. Iwayama, S. Hasegawa, R. Kawahara-Miki, M. Maekawa, M. Toyoshima, Y. Ushida, H. Suganuma, S. Kida, T. Yoshikawa, M. Iyo, K. Hashimoto, Sci. Rep. 8 (2018) 2158.

[83] J. Kim, S. Lee, B.-R. Choi, H. Yang, Y. Hwang, J.H.Y. Park, F.M. LaFerla, J.-S. Han, K.W. Lee, J. Kim, Mol. Nutr. Food Res. 61 (2017).

[84] J. Gao, B. Xiong, B. Zhang, S. Li, N. Huang, G. Zhan, R. Jiang, L. Yang, Y. Wu, L. Miao, B. Zhu, C. Yang, A. Luo, Neuroscience 388 (2018) 357–366.

[85] K. Singh, S.L. Connors, E.A. Macklin, K.D. Smith, J.W. Fahey, P. Talalay, A.W. Zimmerman, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 15550–15555.

[86] S. Wu, Q. Gao, P. Zhao, Y. Gao, Y. Xi, X. Wang, Y. Liang, H. Shi, Y. Ma, Behav. Brain Res. 301 (2016) 55–62.

[87] P. Ferreira-Chamorro, A. Redondo, G. Riego, S. Leánez, O. Pol, Front. Pharmacol. 9 (2018) 1332.

[88] H.-J. Liu, L. Wang, L. Kang, J. Du, S. Li, H.-X. Cui, Cell. Physiol. Biochem. 51 (2018) 528–542.

[89] E.S. Son, J.-W. Park, Y.J. Kim, S.H. Jeong, J.H. Hong, S.-H. Kim, S.Y. Kyung, Toxicol. In Vitro 67 (2020) 104883.

[90] A. Langston-Cox, D. Anderson, D.J. Creek, K. Palmer, E.M. Wallace, S.A. Marshall, Molecules 25 (2020).

[91] K.L. Cheung, T.O. Khor, A.-N. Kong, Pharm. Res. 26 (2009) 224–231.