Adaptogen

Herbal adaptogens concentrating active compounds while maintaining complex synergistic co-factors – supporting Adrenal/ HPA regulation, Long Term Potentiation, AMPK activation, neurogenesis, catecholamine production, tissue regeneration, and many regulatory functions.

Eleuthero (Eleutherococcus senticosus) Root Extract

COMMON NAME

Eleuthero | Ciwujia


TOP BENEFITS OF ELEUTHERO

Supports physical and mental stamina*

Supports healthy stress resistance*


WHAT IS ELEUTHERO?

Eleuthero (Eleutherococcus senticosus; previously called Acanthopanax senticosus) is an adaptogenic herb most commonly used to support the body's natural ability to adapt to stress of everyday life. It is native to Eastern Russia (Siberia), Korea, Japan, and Northern China, and used in folk medicine in these regions. Prior to 2002, Eleuthero was commonly called “Siberian Ginseng,” but this changed in the U.S. with the passage of the Farm Bill, which restricted the use of the name ginseng in commerce exclusively to plants from the genus Panax (such as Panax ginseng). Despite once being known as Siberian Ginseng, and being from the same botanical family (Araliaceae) as ginseng,  Eleuthero should not be confused with true ginsengs, because each has some different active constituents (Eleuthero has eleutherosides, while ginsengs contain ginsenosides). Eleuthero was extensively studied in the former USSR as a means to support physical and mental stamina under normal conditions and during different types of physical and psychological stress [1]. Eleuthero was eventually recommended for use in the Soviet space program to promote adaptability to the stressful conditions of space. Eleutherococcus senticosus contains several bioactive compounds, the main being eleutherosides, which are found at highest concentrations in the root of the plant.* 


NEUROHACKER’S ELEUTHERO SOURCING

Eleutherococcus senticosus Root Extract is standardized to contain not less than 1.2% Eleutheroside B+E. 

Eleutherococcus senticosus Root Extract is a non-GMO, gluten-free, and vegan ingredient.


ELEUTHERO DOSING PRINCIPLES AND RATIONALE

Eleuthero has been used in a range of doses depending on the type of extract, how concentrated it is, whether it was standardized, and if it has been used alone or combined with other ingredients. When used combined with other adaptogens, the dose of Eleuthero root extract used has ranged from 75 to 200 mg [2–6]. Since we are combining the Eleuthero extract with other adaptogens, we selected our recommended 100 mg dose to be within the studied range. We consider Eleuthero to be an herbal adaptogen, so expect it to follow hormetic dosing principles (see Neurohacker Dosing Principles). Herbal adaptogens tend to show a hormetic zone (or range) where there’s a favorable biological response. Clinical data suggests that it’s important to be in this zone; it’s just as important not to be above it. So, it’s important to identify the lowest dose that has been shown to produce the desired response. We opted for a recommended dose consistent with studied doses as well as with a core hormetic principle—only do or use as much as something as would be needed to stimulate the desired response.*

ELEUTHERO KEY MECHANISMS

Supports healthy brain function*

Supports mental endurance [1]

Supports cognitive function [1,7]

Supports healthy serotonin levels [8,9]

Supports healthy dopamine levels [8,10]

Supports noradrenaline levels [8,10]

Supports BDNF levels [11]

Supports neuroprotective functions [12]


Supports a healthy mood and stress response*

Supports healthy behavioral responses to stress [11]

Supports positive affective behavioral responses [13]

Supports healthy stress responses [13]

Supports HPA axis function [13]


Promotes exercise performance*

Supports endurance performance [1,14]

Supports resistance to physical fatigue [1,9,15,16]


Enhances antioxidant defenses*

Supports antioxidant defenses [17]

Counters oxidative stress [18,19]


Complementary ingredients*

Schisandra chinensis and Rhodiola rosea in supporting healthy stress responses [20]

Extramel®, taurine, and milk casein tryptic hydrolysate for stress support [6]

 

*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]S. Gerontakos, A. Taylor, A.Y. Avdeeva, V.A. Shikova, O.N. Pozharitskaya, D. Casteleijn, J. Wardle, A.N. Shikov, J. Ethnopharmacol. 278 (2021) 114274.

[2]G. Aslanyan, E. Amroyan, E. Gabrielyan, M. Nylander, G. Wikman, A. Panossian, Phytomedicine 17 (2010) 494–499.

[3]M. Ciumaşu-Rîmbu, L. Popa, C. Vulpoi, Rev. Med. Chir. Soc. Med. Nat. Iasi 116 (2012) 790–793.

[4]Tohda, Matsui, Inada, Yang, Kuboyama, Nutrients (n.d.).

[5]A. Boolani, D.T. Fuller, S. Mondal, T. Wilkinson, C.C. Darie, E. Gumpricht, Nutrients 12 (2020).

[6]A. Jacquet, A. Grolleau, J. Jove, R. Lassalle, N. Moore, J. Int. Med. Res. 43 (2015) 54–66.

[7]Y. Yamauchi, Y.-W. Ge, K. Yoshimatsu, K. Komastu, T. Kuboyama, X. Yang, C. Tohda, Nutrients 11 (2019).

[8]L. Jin, F. Wu, X. Li, H. Li, C. Du, Q. Jiang, J. You, S. Li, Y. Xu, Phytother. Res. 27 (2013) 1829–1833.

[9]Y.-T. Rhim, H. Kim, S.-J. Yoon, S.-S. Kim, H.-K. Chang, T.-H. Lee, H.-H. Lee, M.-C. Shin, M.-S. Shin, C.-J. Kim, J. Ethnopharmacol. 114 (2007) 38–43.

[10]T. Fujikawa, H. Soya, H. Hibasami, H. Kawashima, H. Takeda, S. Nishibe, K. Nakashima, Phytother. Res. 16 (2002) 474–478.

[11]S. Miyazaki, H. Oikawa, H. Takekoshi, M. Hoshizaki, M. Ogata, T. Fujikawa, Molecules 24 (2018).

[12]Y. Zhou, C. Cheng, D. Baranenko, J. Wang, Y. Li, W. Lu, Int. J. Mol. Sci. 19 (2018).

[13]B. Gaire, D. Lim, J. Tradit. Chin. Med. 34 (2014) 317–323.

[14]J. Kuo, K.W.-C. Chen, I.-S. Cheng, P.-H. Tsai, Y.-J. Lu, N.-Y. Lee, Chin. J. Physiol. 53 (2010) 105–111.

[15]L.-Z. Huang, B.-K. Huang, J. Liang, C.-J. Zheng, T. Han, Q.-Y. Zhang, L.-P. Qin, Phytother. Res. 25 (2011) 940–943.

[16]M. Sumiyoshi, Y. Kimura, Nat Prod J 6 (2016) 49–55.

[17]X. Wang, C.X. Hai, X. Liang, S.X. Yu, W. Zhang, Y.L. Li, J. Ethnopharmacol. 127 (2010) 424–432.

[18]Y.J. Lee, H.-Y. Chung, H.-K. Kwak, S. Yoon, Biochem. Biophys. Res. Commun. 375 (2008) 44–48.

[19]R. Wang, S. Liu, T. Liu, J. Wu, H. Zhang, Z. Sun, Z. Liu, Food Funct. 12 (2021) 4519–4534.

[20]A. Panossian, G. Wikman, P. Kaur, A. Asea, Phytomedicine 16 (2009) 617–622.

NooGandha® Liposomal Ashwagandha (Withania somnifera) Root and Leaf Extract

Common Name

Ashwagandha | Indian ginseng 


Top Benefits of NooGandha® Liposomal Ashwagandha

Supports healthy stress resistance*

Supports cognitive performance*


What is NooGandha® Liposomal Ashwagandha?

Noogandha® is a clinically studied liposomal ashwagandha extract. The "Noo" (for nootropic) gives away the reason it was developed and its emphasis—cognitive performance. Ashwagandha (i.e., Indian ginseng) is a Rasayana—the category of elixirs and tonic herbs prized by the branch of Ayurvedic medicine concerned with rejuvenation, and focused on promoting a youthful state of physical and mental health. Ashwagandha holds a prominent place among the Rasayana herbs, where it was used for many reasons including as general tonic and to infuse energy and vigor in circumstances characterized by exhaustion or a lack of physical energy. A key attribute is that ashwagandha promotes balance. As the English name Indian ginseng implies, ashwagandha was believed to share some of the attributes of ginseng, in essence supporting multiple areas of health and well-being, especially under conditions characterized by increased stress. Herbs that promote these types of nonspecific resistance to and recovery from stress—and which typically also support general well-being, healthy energy, and homeostasis—are called adaptogens.  In two randomized, double-blind, placebo-controlled human trials, NooGandha® supported cognitive function and a healthy stress response.* 


Neurohacker’s NooGandha® Liposomal Ashwagandha Sourcing

NooGandha® is an ashwagandha root and leaf extract whose composition and research demonstrate support for cognitive function. NooGandha®’s extraction process focuses on specific compounds with nootropic bioactivity, with less of the compounds that show a calming effect while still retaining the stress support benefits of ashwagandha.* 

NooGandha® is made from ashwagandha grown in India and standardized to contain not less than 4% withanolides. 

NooGandha® is a registered trademark of Specnova LLC, USA.

NooGandha® is a non-GMO, gluten-free, and vegan ingredient.


NooGandha® Liposomal Ashwagandha Dosing Principles and Rationale

We consider Ashwagandha to be an herbal adaptogen, so expect it to follow hormetic dosing principles (see Neurohacker Dosing Principles). Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone; it’s just as important not to be above it. So, it’s important to identify the lowest dose that can produce the desired response. The studied dose range for NooGandha® is 225-400 mg [1,2]. In a 30-day study that compared 225 mg and 400 mg doses, the better overall combination of cognitive and stress support occurred with the lower dose [1]. We opted to recommend a  225 mg dose to be consistent with the results of this study, as well as with a core hormetic principle—only do or use as much as something as would be needed to stimulate the desired response.*


Withania somnifera Key Mechanisms

Supports brain function*

Supports cognitive performance [1,3–5]

Supports GABAergic neurotransmission [6–9] 

Supports dopamine levels [10]

Influences acetylcholinesterase activity [10]

Supports neuroprotective functions [10–13]

Influences neural immune signaling [13,14]


Supports a healthy mood and stress response*

Supports a calm mood [1,14,15]

Supports healthy stress responses [16–18]

Supports healthy stress hormone levels [1,16–18]


Promotes healthy sleep*

Supports sleep onset [9,15]

Supports sleep efficiency [15]

Supports quality of sleep [15,19]

Supports slow wave sleep [9]

Supports total sleep time [9]


Supports mitochondrial structure and function*

Supports mitochondrial function [12,20]

Supports electron transport chain activity [10–12,21]

Supports citric acid cycle enzymes [21]


Promotes exercise performance*

Supports endurance performance [22,23]

Supports muscle strength [19,24]

Supports post-exercise recovery [24]


Supports healthy metabolism*

Supports healthy insulin sensitivity [14,25–28]

Supports healthy blood glucose levels [25–29]

Supports healthy leptin signaling [14,28]


Promotes a healthy body weight*

Supports healthy body weight [14,28]

Supports healthy feeding behaviors [14,16]

Supports lean mass [24]


Enhances antioxidant defenses*

Supports antioxidant defenses [10–12,29,30]

Counters ROS levels and oxidative stress [10,12,13,20]


Supports healthy thyroid function*

Supports thyroid function [31–33]


Promotes healthy aging and longevity*

Supports lifespan (Caenorhabditis elegans) [13,34]

Supports insulin-like growth factor-1 (IGF-1) signaling [13,34]

Upregulates FOXO3A and SIRT3 [35]

Supports healthy immune signaling [14,25,26]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


References 

[1]A. Remenapp, K. Coyle, T. Orange, T. Lynch, D. Hooper, S. Hooper, K. Conway, H.A. Hausenblas, J. Ayurveda Integr. Med. 13 (2021) 100510.

[2]D. Xing, C. Yoo, C.J. Rasmussen, J. Int. Soc. Sports Nutr. 17 (2020) 59.

[3]U. Pingali, R. Pilli, N. Fatima, Pharmacognosy Res. 6 (2014) 12–18.

[4]K.N.R. Chengappa, C.R. Bowie, P.J. Schlicht, D. Fleet, J.S. Brar, R. Jindal, J. Clin. Psychiatry 74 (2013) 1076–1083.

[5]D. Choudhary, S. Bhattacharyya, S. Bose, J. Diet. Suppl. 14 (2017) 599–612.

[6]A.K. Mehta, P. Binkley, S.S. Gandhi, M.K. Ticku, Indian J. Med. Res. 94 (1991) 312–315.

[7]J.P. Bhattarai, S.A. Park, S.K. Han, Phytotherapy Research (2009).

[8]H. Yin, D.H. Cho, S.J. Park, S.K. Han, The American Journal of Chinese Medicine 41 (2013) 1043–1051.

[9]A. Kumar, H. Kalonia, Indian J. Pharm. Sci. 70 (2008) 806–810.

[10]M.J. Manjunath, Muralidhara, J. Food Sci. Technol. 52 (2015) 1971–1981.

[11]P. Kumar, A. Kumar, J. Med. Food 12 (2009) 591–600.

[12]A. Sood, A. Mehrotra, D.K. Dhawan, R. Sandhir, Metab. Brain Dis. 33 (2018) 1261–1274.

[13]B.A. Akhoon, S. Pandey, S. Tiwari, R. Pandey, Exp. Gerontol. 78 (2016) 47–56.

[14]T. Kaur, G. Kaur, J. Neuroinflammation 14 (2017) 201.

[15]D. Langade, S. Kanchi, J. Salve, K. Debnath, D. Ambegaokar, Cureus 11 (2019) e5797.

[16]D. Choudhary, S. Bhattacharyya, K. Joshi, J. Evid. Based Complementary Altern. Med. 22 (2017) 96–106.

[17]K. Chandrasekhar, J. Kapoor, S. Anishetty, Indian J. Psychol. Med. 34 (2012) 255–262.

[18]B. Auddy, J. Hazra, A. Mitra, B. Abedon, S. Ghosal, Journal of American Nutraceutical Association 11 (2008) 50–56.

[19]A.A. Raut, N.N. Rege, F.M. Tadvi, P.V. Solanki, K.R. Kene, S.G. Shirolkar, S.N. Pandey, R.A. Vaidya, A.B. Vaidya, J. Ayurveda Integr. Med. 3 (2012) 111–114.

[20]P. Parihar, R. Shetty, P. Ghafourifar, M.S. Parihar, Cell. Mol. Biol. 62 (2016) 73–83.

[21]P. Senthilnathan, R. Padmavathi, V. Magesh, D. Sakthisekaran, Life Sci. 78 (2006) 1010–1014.

[22]J.S. Sandhu, B. Shah, S. Shenoy, S. Chauhan, G.S. Lavekar, M.M. Padhi, Int. J. Ayurveda Res. 1 (2010) 144–149.

[23]B. Choudhary, A. Shetty, D.G. Langade, Ayu 36 (2015) 63–68.

[24]S. Wankhede, D. Langade, K. Joshi, S.R. Sinha, S. Bhattacharyya, J. Int. Soc. Sports Nutr. 12 (2015) 43.

[25]M.R. Shahraki, Z. Samadi Noshahr, H. Ahmadvand, A. Nakhaie, J. Basic Clin. Physiol. Pharmacol. 27 (2016) 387–391.

[26]Z. Samadi Noshahr, M.R. Shahraki, H. Ahmadvand, D. Nourabadi, A. Nakhaei, Rep Biochem Mol Biol 3 (2015) 62–67.

[27]T. Anwer, M. Sharma, K.K. Pillai, M. Iqbal, Basic Clin. Pharmacol. Toxicol. 102 (2008) 498–503.

[28]J. Lee, J. Liu, X. Feng, M.A. Salazar Hernández, P. Mucka, D. Ibi, J.W. Choi, U. Ozcan, Nat. Med. 22 (2016) 1023–1032.

[29]T. Anwer, M. Sharma, K.K. Pillai, G. Khan, Acta Pol. Pharm. 69 (2012) 1095–1101.

[30]S.K. Gupta, A. Dua, B.P.S. Vohra, Drug Metabol. Drug Interact. 19 (2003) 211–222.

[31]A.K. Sharma, I. Basu, S. Singh, J. Altern. Complement. Med. 24 (2018) 243–248.

[32]J.M. Gannon, P.E. Forrest, K.N. Roy Chengappa, J. Ayurveda Integr. Med. 5 (2014) 241–245.

[33]R. Jatwa, A. Kar, Phytother. Res. 23 (2009) 1140–1145.

[34]B.A. Akhoon, L. Rathor, R. Pandey, Exp. Gerontol. 104 (2018) 113–117.

[35]R. Pradhan, R. Kumar, S. Shekhar, N. Rai, A. Ambashtha, J. Banerjee, M. Pathak, S.N. Dwivedi, S. Dey, A.B. Dey, Exp. Gerontol. 95 (2017) 9–15.

SenActiv®

COMMON NAME

Notoginseng | Sweet Chestnut Rose | ActiGin


TOP BENEFITS OF SenActiv®

Supports exercise performance*

Supports healthy aging *

Supports cellular health *


WHAT IS SENACTIV®?

Senactiv® (previously called ActiGin) is a patented combination of two adaptogenic extracts—notoginseng root (Panax notoginseng, aka san-chi ginseng) and sweet chestnut rose (Rosa roxburghii). Both extracts have a long history of use in Traditional Chinese Medicine. Notoginseng is rich in bioactive compounds common to plants in the ginseng family, namely polysaccharides and saponins. Ginsenosides are the main saponins in notoginseng, with Ginsenoside Rg1 being one of the most abundant ginsenosides in notoginseng. R. roxburghii is native to the southwest region of China. It is known for its high vitamin C, superoxide dismutase (SOD), and flavonoid content. R. roxburghii has strong antioxidant properties. Senactiv® is the result of more than 10 years of research and development. It has been used in 5 human studies, with more studies in the pipeline. The emphasis of the studies has been on exercise performance, especially in functions related to muscle energy, recovery, and senescent cells.* 


NEUROHACKER’S SENACTIV® SOURCING

SenActiv® is a patented ingredient made from highly purified and fractionated extracts of Panax notoginseng and Rosa roxburghii. It is produced by NuLiv Science.

SenActiv® is standardized to contain not less than 30% saponins, including not less than 10% ginsenoside Rg1. It’s also standardized for polyphenols (≥2%) and vitamin C (≥0.6%).

SenActiv® is a registered trademark of NuLiv Science USA Inc.

SenActiv® is non-GMO, gluten-free, vegan. It is Informed Choice Ingredient and Informed Sport Certified, Kosher certified, and Halal certified. 


SENACTIV® DOSING PRINCIPLES AND RATIONALE

In human and animal research studies, rather than seeing SenActive® mentioned by name, you’ll see Rg1 supplied by NuLiv Science, Inc., Brea, CA, USA. The dose of Rg1 used in the human studies has been 5 mg [1–5], while we are recommending a 50 mg dose of SenActive®. This can be a bit confusing. The makers of SenActive® began studying this extract before they decided on this trademarked name. So, when they submitted articles to scientific journals for publication, they referred to it by one of the compounds used to standardize the extract, specifically the Rg1 from the Panax notoginseng (some journals also prefer trademarked names not be used). The key point is that we are using the extract from these studies at the studied dose, with 50 mg of SenActiv® providing the 5 mg ginsenoside Rg1 mentioned in the studies.* 


SENACTIV® KEY MECHANISMS

Supports brain function*

Supports cognitive function [6,7]

Supports neuroprotective functions [8–14]

Supports synaptic plasticity [6,7]

Influences neural autophagy [10]

Influences neural immune signaling [15]

Influences microglia activation [15]

Supports neural stem cell function [12,16,17]

Counters neural senescence [13]


Promotes exercise performance*

Supports exercise performance [1,2,18]

Supports exercise recovery [1]

Supports skeletal muscle metabolism [1]

Counters exercise-induced oxidative stress [1,19,20]

Influences skeletal muscle immune signaling [1]

Supports the elimination of senescent cells in exercising muscle [2] 


Supports a healthy gut microbiota*

Supports healthy gut microbiota composition [21–23]

Supports the gut-brain axis [23]


Promotes healthy aging* 

Supports antioxidant defenses [24–29]

Supports autophagy [8,30–34]

Supports mitochondrial function [35]

Influences advanced glycation end product (AGE) production [25]

Supports the management of senescent cells [2] 

Supports anti-senescence mechanisms [36–44]

Supports stem cell health [5,25,39,42,43,45,46]

Supports cellular functions involved with pruning stressed cells [47,48]


Supports cellular signaling* 

Influences PI3K/AKT [36,49,50]

Influences mTOR signaling [34,36,50]

Influences AMPK signaling [34,51–53]

Influences SIRT1 signaling [48,54,55]

Influences Nrf2 signaling [49,56–60]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]C.-W. Hou, S.-D. Lee, C.-L. Kao, I.-S. Cheng, Y.-N. Lin, S.-J. Chuang, C.-Y. Chen, J.L. Ivy, C.-Y. Huang, C.-H. Kuo, PLoS One 10 (2015) e0116387.

[2]J. Wu, S. Saovieng, I.-S. Cheng, T. Liu, S. Hong, C.-Y. Lin, I.-C. Su, C.-Y. Huang, C.-H. Kuo, J. Ginseng Res. (2018).

[3]J. Wu, S. Saovieng, I.-S. Cheng, J. Jensen, W.-H. Jean, A. Alkhatib, C.-L. Kao, C.-Y. Huang, C.-H. Kuo, J. Funct. Foods 58 (2019) 27–33.

[4]J. Wu, I.-S. Cheng, S. Saovieng, W.-H. Jean, C.-L. Kao, Y.-Y. Liu, C.-Y. Huang, T.X.Y. Lee, J.L. Ivy, C.-H. Kuo, Aging 12 (2020) 20226–20234.

[5]T.X.Y. Lee, J. Wu, W.-H. Jean, G. Condello, A. Alkhatib, C.-C. Hsieh, Y.-W. Hsieh, C.-Y. Huang, C.-H. Kuo, Aging 13 (2021) 16567–16576.

[6]G. Zhu, Y. Wang, J. Li, J. Wang, Neuroscience 292 (2015) 81–89.

[7]L. Yang, J. Zhang, K. Zheng, H. Shen, X. Chen, J. Gerontol. A Biol. Sci. Med. Sci. 69 (2014) 282–294.

[8]Y. Li, F. Wang, Y. Luo, J. Surg. Res. 207 (2017) 181–189.

[9]L. He, X. Chen, M. Zhou, D. Zhang, J. Yang, M. Yang, D. Zhou, Phytomedicine 18 (2011) 437–442.

[10]Y. Shi, X. Zhou, R. Yang, S. Ying, L. Wang, Aging 13 (2021) 11207–11217.

[11]S.-Z. Liu, W. Cheng, J.-W. Shao, Y.-F. Gu, Y.-Y. Zhu, Q.-J. Dong, S.-Y. Bai, P. Wang, L. Lin, Curr Med Sci 39 (2019) 196–203.

[12]L. Chen, H. Yao, X. Chen, Z. Wang, Y. Xiang, J. Xia, Y. Liu, Y. Wang, Neurochem. Res. 43 (2018) 430–440.

[13]J. Zhu, X. Mu, J. Zeng, C. Xu, J. Liu, M. Zhang, C. Li, J. Chen, T. Li, Y. Wang, PLoS One 9 (2014) e101291.

[14]S.-J. Zhong, L. Wang, R.-Z. Gu, W.-H. Zhang, R. Lan, X.-Y. Qin, Int. J. Med. Sci. 17 (2020) 1048–1055.

[15]Z. Zhou, M. He, Q. Zhao, D. Wang, C. Zhang, C. Liu, H. Zhao, Y. Dun, Y. He, C. Yuan, D. Yuan, T. Wang, Curr. Pharm. Biotechnol. 22 (2021) 1369–1379.

[16]Y. Xiang, S.-H. Wang, L. Wang, Z.-L. Wang, H. Yao, L.-B. Chen, Y.-P. Wang, Stem Cells Int. 2019 (2019) 5010184.

[17]L.-H. Shen, J.-T. Zhang, Neurol. Res. 26 (2004) 422–428.

[18]M.T.C. Liang, T.D. Podolka, W.J. Chuang, J. Strength Cond. Res. 19 (2005) 108–114.

[19]S.-H. Yu, H.-Y. Huang, M. Korivi, M.-F. Hsu, C.-Y. Huang, C.-W. Hou, C.-Y. Chen, C.-L. Kao, R.-P. Lee, S.-D. Lee, C.-H. Kuo, J. Int. Soc. Sports Nutr. 9 (2012) 23.

[20]M. Korivi, C.-W. Hou, C.-Y. Huang, S.-D. Lee, M.-F. Hsu, S.-H. Yu, C.-Y. Chen, Y.-Y. Liu, C.-H. Kuo, Evid. Based. Complement. Alternat. Med. 2012 (2012) 932165.

[21]L. Wang, P. Zhang, C. Li, F. Xu, J. Chen, Food Funct. 13 (2022) 530–547.

[22]Y. Xu, N. Wang, H.-Y. Tan, S. Li, C. Zhang, Z. Zhang, Y. Feng, Theranostics 10 (2020) 11302–11323.

[23]T. Zhang, K. Dong, L. Xiao, G. Li, Z. Zhang, Neuropsychiatr. Dis. Treat. 16 (2020) 2169–2179.

[24]J. Sun, L. Zhang, J. Zhang, R. Ran, Y. Shao, J. Li, D. Jia, Y. Zhang, M. Zhang, L. Wang, Y. Wang, Int. Immunopharmacol. 58 (2018) 94–102.

[25]J. Li, D. Cai, X. Yao, Y. Zhang, L. Chen, P. Jing, L. Wang, Y. Wang, Int. J. Mol. Sci. 17 (2016).

[26]D. Huang, C. Li, Q. Chen, X. Xie, X. Fu, C. Chen, Q. Huang, Z. Huang, H. Dong, Food Chem. 377 (2022) 131922.

[27]C. Janse van Rensburg, E. Erasmus, D.T. Loots, W. Oosthuizen, J.C. Jerling, H.S. Kruger, R. Louw, M. Brits, F.H. van der Westhuizen, Eur. J. Nutr. 44 (2005) 452–457.

[28]G. Chen, J. Kan, Int. J. Biol. Macromol. 107 (2018) 166–174.

[29]G. Chen, J. Kan, J. Food Sci. Technol. 55 (2018) 1083–1092.

[30]Z.-M. Xu, C.-B. Li, Q.-L. Liu, P. Li, H. Yang, Int. J. Mol. Sci. 19 (2018).

[31]P. Zhou, W. Xie, Y. Luo, S. Lu, Z. Dai, R. Wang, X. Zhang, G. Li, G. Sun, X. Sun, Molecules 23 (2018).

[32]P. Wang, C. Lin, S. Wu, K. Huang, Y. Wang, X. Bao, F. Zhang, Z. Huang, H. Teng, Cell. Mol. Neurobiol. 38 (2018) 679–690.

[33]H. Yuan, Y. Wang, H. Chen, X. Cai, 3 Biotech 10 (2020) 58.

[34]P. Yang, L. Ling, W. Sun, J. Yang, L. Zhang, G. Chang, J. Guo, J. Sun, L. Sun, D. Lu, Acta Biochim. Biophys. Sin. 50 (2018) 144–155.

[35]Z. Zhou, J. Wang, Y. Song, Y. He, C. Zhang, C. Liu, H. Zhao, Y. Dun, D. Yuan, T. Wang, Phytother. Res. 32 (2018) 243–250.

[36]Y. Zhang, W. Cai, G. Han, S. Zhou, J. Li, M. Chen, H. Li, Int. J. Mol. Med. 45 (2020) 1225–1236.

[37]L. Zhai, X. Xu, J. Liu, C. Jing, X. Yang, D. Zhao, R. Jiang, L.-W. Sun, Front. Pharmacol. 12 (2021) 690538.

[38]M. Wang, Y. Lei, Chin. J. Integr. Med. 20 (2014) 758–763.

[39]Z. Wang, R. Jiang, L. Wang, X. Chen, Y. Xiang, L. Chen, M. Xiao, L. Ling, Y. Wang, Stem Cells Int. 2020 (2020) 2365814.

[40]Z.-L. Wang, L.-B. Chen, Z. Qiu, X.-B. Chen, Y. Liu, J. Li, L. Wang, Y.-P. Wang, Mol. Med. Rep. 17 (2018) 6269–6276.

[41]S.G. Li, M.Z. Yan, D. Zhang, M. Ye, J.J. Deng, Genet. Mol. Res. 15 (2016).

[42]A.-W. Shi, N. Gu, X.-M. Liu, X. Wang, Y.-Z. Peng, J. Int. Med. Res. 39 (2011) 1306–1318.

[43]Y. Zeng, W. Hu, P. Jing, X. Chen, Z. Wang, L. Wang, Y. Wang, Life Sci. 209 (2018) 63–68.

[44]B.-R. Zhou, Y. Xu, D. Wu, F. Permatasari, Y.-Y. Gao, D. Luo, Arch. Dermatol. Res. 304 (2012) 223–228.

[45]C. Chen, X.-Y. Mu, Y. Zhou, K. Shun, S. Geng, J. Liu, J.-W. Wang, J. Chen, T.-Y. Li, Y.-P. Wang, Acta Pharmacol. Sin. 35 (2014) 143–150.

[46]W. Hu, P. Jing, L. Wang, Y. Zhang, J. Yong, Y. Wang, BMC Complement. Altern. Med. 15 (2015) 119.

[47]Y. Chen, Z.-J. Liu, J. Liu, L.-K. Liu, E.-S. Zhang, W.-L. Li, Asian Pac. J. Cancer Prev. 15 (2014) 10351–10354.

[48]Y.-L. Tang, C.-G. Zhang, H. Liu, Y. Zhou, Y.-P. Wang, Y. Li, Y.-J. Han, C.-L. Wang, Med. Sci. Monit. 26 (2020) e918207.

[49]Z. Wang, L. Wang, R. Jiang, C. Li, X. Chen, H. Xiao, J. Hou, L. Hu, C. Huang, Y. Wang, Free Radic. Biol. Med. 174 (2021) 182–194.

[50]F. Li, X. Li, X. Peng, L. Sun, S. Jia, P. Wang, S. Ma, H. Zhao, Q. Yu, H. Huo, Exp. Ther. Med. 14 (2017) 1241–1247.

[51]Q. Xiao, S. Zhang, C. Yang, R. Du, J. Zhao, J. Li, Y. Xu, Y. Qin, Y. Gao, W. Huang, Int. J. Endocrinol. 2019 (2019) 7514802.

[52]Z. Xu, C. Li, Q. Liu, H. Yang, P. Li, J. Cell. Biochem. 120 (2019) 18388–18397.

[53]H.-M. Lee, O.-H. Lee, K.-J. Kim, B.-Y. Lee, Phytother. Res. 26 (2012) 1017–1022.

[54]Y.-L. Tang, Y. Zhou, Y.-P. Wang, Y.-H. He, J.-C. Ding, Y. Li, C.-L. Wang, Exp. Ther. Med. 20 (2020) 1245–1252.

[55]X.-H. Liu, S.-Z. Cai, Y. Zhou, Y.-P. Wang, Y.-J. Han, C.-L. Wang, W. Zhou, Endocr. Metab. Immune Disord. Drug Targets (2021).

[56]S.-F. Chu, Z. Zhang, X. Zhou, W.-B. He, C. Chen, P. Luo, D.-D. Liu, Q.-D. Ai, H.-F. Gong, Z.-Z. Wang, H.-S. Sun, Z.-P. Feng, N.-H. Chen, Acta Pharmacol. Sin. 40 (2019) 13–25.

[57]Y. Gao, S.-F. Chu, Z. Zhang, Q.-D. Ai, C.-Y. Xia, H.-Y. Huang, N.-H. Chen, J. Asian Nat. Prod. Res. 21 (2019) 782–797.

[58]C. Ning, X. Gao, C. Wang, Y. Kong, Z. Liu, H. Sun, P. Sun, X. Huo, X. Ma, Q. Meng, K. Liu, Regul. Toxicol. Pharmacol. 98 (2018) 58–68.

[59]Z. Zhang, K. Yang, R. Mao, D. Zhong, Z. Xu, J. Xu, M. Xiong, Neuroreport 33 (2022) 81–89.

[60]C. Ning, X. Gao, C. Wang, X. Huo, Z. Liu, H. Sun, X. Yang, P. Sun, X. Ma, Q. Meng, K. Liu, Environ. Toxicol. 33 (2018) 1050–1060.

Sirtmax® Kaempferia parviflora

Common Name

Black Ginger | Black Turmeric | Krachai Dam


Top Benefits of Sirtmax® 

Supports mitochondrial biogenesis, structure and function*

Supports muscle strength and endurance*

Supports metabolism & healthy blood sugar levels*

Supports healthy weight*

Supports antioxidant defenses*

Supports healthy aging*

Support cardiovascular function*

Supports brain function*

Supports reproductive health*


What is Sirtmax®?

Kaempferia parviflora is found in the upper Northeastern regions of Thailand. Root extracts have a long history of use and a reputation for being a health tonic and energy enhancer (i.e., Thai ginseng). The novel active constituents are a special type of polyphenol called polymethoxyflavonoids. Sirtmax® Kaempferia parviflora root extract is standardized for polymethoxyflavonoid content.*


Neurohacker’s Sirtmax® Sourcing

Sirtmax® has been used in animal and human research studies.

Created by Tokiwa Phytochemicals, a leader in standardized Kaempferia parviflora supplementation. 

Highest concentration, full-spectrum root extract, with double standardization for 5,7-dimethoxyflavone (≥ 4%) along with five Kaempferia parviflora polymethoxyflavonoids (≥ 15%).

Grown in Thailand & Laos.

Sirtmax® is a registered trademark of Tokiwa Phytochemical Co., Ltd.


Sirtmax® Dosing Principles and Rationale

We consider Kaempferia parviflora to be in the adaptogenic herb category; following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is within the studied range in humans.*


Kaempferia parviflora Key Mechanisms

Supports mitochondrial biogenesis*

Supports mitochondrial number [1]

Supports Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1alpha (PGC-1α) [1–3]

Supports transcription factors for mitochondrial biogenesis (estrogen-related receptor-α [ERRα], nuclear respiratory factor-1 [NRF1], and mitochondrial transcription factor A [TFAM]) through activation of PGC-1α [2]


Supports mitochondrial function*

Supports AMP-Activated Protein Kinase (AMPK) [2,3]

Promotes ATP production (output of mitochondrial oxidative phosphorylation) [3]

Promotes mitochondrial β-oxidation (fatty acid metabolism) – upregulates peroxisome proliferator-activated receptor gamma (PPARγ) and delta (PPARδ)  [2,4]


Promotes exercise performance*

Supports endurance performance [1,2,5,6]

Supports post-exercise recovery [1]

Supports muscle strength [5,6]

Supports muscle metabolism (upregulates glycogen synthase and increases glycogen content) [1]


Supports healthy metabolic function*

Supports healthy insulin sensitivity [7]

Promotes cell metabolism (muscle cell precursors [myoblasts] in vitro): promotes glucose uptake and the downregulation of lactic acid production; promotes the expression of glucose transporter 4 (GLUT4) and monocarboxylate transporter 1 (MCT1) [3]


Supports healthy body weight*

Supports healthy fat accumulation and blood/liver lipid levels [4,7,8]

Promotes differentiation of brown adipocyte cells  [4]

Supports uncoupling protein 1 (UCP1) in brown adipose tissue - supports thermogenesis of brown adipose tissue  [4,7,8]

Promotes whole-body energy expenditure through activation of brown adipose tissue [7,9]

Promotes lean body mass [2]


Supports antioxidant defenses*

Supports antioxidant enzymes [5]


Promotes healthy aging and longevity* 

Supports SIRT-1 [2,10]

Counters the production of advanced glycation end-products (AGEs) [10]


Supports healthy cardiovascular function*

Promotes healthy nitric oxide (NO) signaling pathway function [11–14]

Supports endothelial NO synthase (eNOS) [11]

Inhibits phosphodiesterase 5 (PDE-5), the enzyme that cleaves the NO mediator cyclic guanosine monophosphate (cGMP) to 5’GMP [15]

Supports NO signaling pathway in cardiac tissue via upregulated cGMP levels [12]

Promotes vasodilation via the NO signaling pathway [13,14]


Supports brain function*

Influences acetylcholinesterase (AChE)activity [16]

Supports neuroprotective functions [17]


Supports reproductive function*

Supports relaxation of the corpus cavernosum [18]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]K. Toda, S. Hitoe, S. Takeda, H. Shimoda, Heliyon 2 (2016) e00115.

[2]M.-B. Kim, T. Kim, C. Kim, J.-K. Hwang, J. Med. Food 21 (2018) 30–38.

[3]K. Toda, S. Takeda, S. Hitoe, S. Nakamura, H. Matsuda, H. Shimoda, J. Nat. Med. 70 (2016) 163–172.

[4]H. Kobayashi, E. Horiguchi-Babamoto, M. Suzuki, H. Makihara, H. Tomozawa, M. Tsubata, T. Shimada, K. Sugiyama, M. Aburada, J. Nat. Med. 70 (2016) 54–61.

[5]J. Wattanathorn, S. Muchimapura, T. Tong-Un, N. Saenghong, W. Thukhum-Mee, B. Sripanidkulchai, Evid. Based. Complement. Alternat. Med. 2012 (2012) 732816.

[6]K. Promthep, W. Eungpinichpong, B. Sripanidkulchai, U. Chatchawan, Med. Sci. Monit. Basic Res. 21 (2015) 100–108.

[7]T. Shimada, T. Horikawa, Y. Ikeya, H. Matsuo, K. Kinoshita, T. Taguchi, K. Ichinose, K. Takahashi, M. Aburada, Fitoterapia 82 (2011) 1272–1278.

[8]S. Yoshino, M. Kim, R. Awa, H. Kuwahara, Y. Kano, T. Kawada, Food Sci Nutr 2 (2014) 634–637.

[9]M. Matsushita, T. Yoneshiro, S. Aita, T. Kamiya, N. Kusaba, K. Yamaguchi, K. Takagaki, T. Kameya, H. Sugie, M. Saito, J. Nutr. Sci. Vitaminol. 61 (2015) 79–83.

[10]A. Nakata, Y. Koike, H. Matsui, T. Shimadad, M. Aburada, J. Yang, Nat. Prod. Commun. 9 (2014) 1291–1294.

[11]S.K. Wattanapitayakul, M. Suwatronnakorn, L. Chularojmontri, A. Herunsalee, S. Niumsakul, S. Charuchongkolwongse, N. Chansuvanich, J. Ethnopharmacol. 110 (2007) 559–562.

[12]P. Weerateerangkul, S. Palee, K. Chinda, S.C. Chattipakorn, N. Chattipakorn, J. Cardiovasc. Pharmacol. 60 (2012) 299–309.

[13]P. Tep-Areenan, P. Sawasdee, M. Randall, Phytother. Res. 24 (2010) 1520–1525.

[14]P. Tep-areenan, K. Ingkaninan, M.D. Randall, Asian Biomed. 4 (2010) 103–111.

[15]P. Temkitthawon, T.R. Hinds, J.A. Beavo, J. Viyoch, K. Suwanborirux, W. Pongamornkul, P. Sawasdee, K. Ingkaninan, J. Ethnopharmacol. 137 (2011) 1437–1441.

[16]P. Sawasdee, C. Sabphon, D. Sitthiwongwanit, U. Kokpol, Phytother. Res. 23 (2009) 1792–1794.

[17]H.-I. Moon, S.-B. Cho, J.-H. Lee, Y.-C. Lee, J.-H. Lee, C.-H. Lee, S.-K. Kim, Phytother. Res. 25 (2011) 1215–1217.

[18]C. Jansakul, K. Tachanaparuksa, M.J. Mulvany, Y. Sukpondma, Eur. J. Pharmacol. 691 (2012) 235–244.

American Ginseng (Panax quinquefolius) Root Extract

COMMON NAME

American Ginseng


TOP BENEFITS OF AMERICAN GINSENG

Supports brain health and cognitive performance*

Supports adaptation to stress *

Supports mood*


WHAT IS AMERICAN GINSENG?

American ginseng (Panax quinquefolius) is a variety of ginseng native to forested regions in North America. It is the same genus as Asian ginseng (Panax ginseng) and prized for many of the same reasons—invigorating and fortifying in times of higher stress or greater demands, and for supporting the capacity for mental and physical work. Both American and Asian ginseng contain similar active constituents called ginsenosides. The ginsenosides are thought to be responsible for many of the adaptogenic (i.e., stress and fatigue support) and health-promoting properties associated with ginseng [1]. While there are many different ginsenosides, the most well characterized include Rb1, Rb2, Rg1, Rc, Rd, and Re. 


NEUROHACKER’S AMERICAN GINSENG SOURCING

American Ginseng Root Extract is standardized for 5% ginsenosides.

American Ginseng Root Extract is non-GMO, gluten-free, and vegan.


AMERICAN GINSENG DOSING PRINCIPLES AND RATIONALE

We consider Panax quinquefolius to be in the adaptogenic herb category; following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is consistent with the doses used in human clinical studies for supporting working memory, alertness, and calmness.*


AMERICAN GINSENG KEY MECHANISMS

Supports brain function and cognition*

Supports attention [2]

Supports working memory [2,3]

Supports learning and memory [4–7]

Supports cholinergic neurotransmission [1,4,5,8,9]

Supports dopaminergic neurotransmission [10–13]

Supports GABAergic neurotransmission [1,14]

Supports neurite outgrowth, dendritic spine density, and synaptic plasticity [1,5–7]

Supports BDNF signaling [1,7,8,15]

Supports neurogenesis [1,8,15] 

Supports neuroprotective functions [1,4,5,8,14,16]

Supports antioxidant defenses [14]

Counters oxidative stress [14]

Supports healthy neural immune/cytokine signaling [1,8,14,17]


Supports mood*

Supports calmness [2]

Supports mood [1,14,18]

Adaptogenic actions (i.e., supports stress resilience and anti-fatigue) [5]

Modulates stress hormone levels / HPA-axis activation [1,14] 


Supports healthy cardiometabolic function*

Supports healthy cardiometabolic parameters [19–21]

Supports healthy blood glucose levels [22–24]

Supports healthy insulin sensitivity [25]

Supports fat metabolism [19]

Supports mitochondrial enzyme complex activities [14]


Supports a healthy gut microbiota*

Supports healthy gut microbiota composition [26–28]

Supports healthy gut immune/cytokine signaling [26,27,29]

Supports gut-brain axis [30]


Supports exercise performance*

Supports high-intensity endurance performance [31,32]

Supports healthy responses to exercise-induced muscle damage [31–33]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES 

[1]H.J. Kim, P. Kim, C.Y. Shin, J. Ginseng Res. 37 (2013) 8–29.

[2]A. Scholey, A. Ossoukhova, L. Owen, A. Ibarra, A. Pipingas, K. He, M. Roller, C. Stough, Psychopharmacology 212 (2010) 345–356.

[3]A. Ossoukhova, L. Owen, K. Savage, M. Meyer, A. Ibarra, M. Roller, A. Pipingas, K. Wesnes, A. Scholey, Hum. Psychopharmacol. 30 (2015) 108–122.

[4]K. Shin, H. Guo, Y. Cha, Y.-H. Ban, D.W. Seo, Y. Choi, T.-S. Kim, S.-P. Lee, J.-C. Kim, E.-K. Choi, J.-M. Yon, Y.-B. Kim, Regul. Toxicol. Pharmacol. 78 (2016) 53–58.

[5]Y. Cheng, L.-H. Shen, J.-T. Zhang, Acta Pharmacol. Sin. 26 (2005) 143–149.

[6]I. Mook-Jung, H.S. Hong, J.H. Boo, K.H. Lee, S.H. Yun, M.Y. Cheong, I. Joo, K. Huh, M.W. Jung, J. Neurosci. Res. 63 (2001) 509–515.

[7]H. Zhao, Q. Li, X. Pei, Z. Zhang, R. Yang, J. Wang, Y. Li, Behav. Brain Res. 201 (2009) 311–317.

[8]K. Radad, R. Moldzio, W.-D. Rausch, CNS Neurosci. Ther. 17 (2011) 761–768.

[9]C.G. Benishin, Neurochem. Int. 21 (1992) 1–5.

[10]G.-L. Wang, Y.-P. Wang, J.-Y. Zheng, L.-X. Zhang, Brain Res. 1699 (2018) 44–53.

[11]S.H. Lee, J. Hur, E.H. Lee, S.Y. Kim, Biomol. Ther. 20 (2012) 482–486.

[12]H.S. Kim, Y.T. Hong, K.W. Oh, Y.H. Seong, H.M. Rheu, D.H. Cho, S. Oh, W.K. Park, C.G. Jang, Gen. Pharmacol. 30 (1998) 783–789.

[13]H.S. Kim, K.S. Kim, K.W. Oh, Pharmacol. Biochem. Behav. 63 (1999) 407–412.

[14]P. Chanana, A. Kumar, Front. Neurosci. 10 (2016) 84.

[15]L.-H. Shen, J.-T. Zhang, Neurol. Res. 26 (2004) 422–428.

[16]Y.C. Kim, S.R. Kim, G.J. Markelonis, T.H. Oh, J. Neurosci. Res. 53 (1998) 426–432.

[17]C.F. Wu, X.L. Bi, J.Y. Yang, J.Y. Zhan, Y.X. Dong, J.H. Wang, J.M. Wang, R. Zhang, X. Li, Int. Immunopharmacol. 7 (2007) 313–320.

[18]M. Chatterjee, P. Verma, G. Palit, Indian J. Exp. Biol. 48 (2010) 306–313.

[19]R.K. Singh, E. Lui, D. Wright, A. Taylor, M. Bakovic, Can. J. Physiol. Pharmacol. 95 (2017) 1046–1057.

[20]V. Vuksan, Z.Z. Xu, E. Jovanovski, A.L. Jenkins, U. Beljan-Zdravkovic, J.L. Sievenpiper, P. Mark Stavro, A. Zurbau, L. Duvnjak, M.Z.C. Li, Eur. J. Nutr. (2018).

[21]I. Mucalo, E. Jovanovski, D. Rahelić, V. Božikov, Z. Romić, V. Vuksan, J. Ethnopharmacol. 150 (2013) 148–153.

[22]V. Vuksan, M.P. Stavro, J.L. Sievenpiper, V.Y. Koo, E. Wong, U. Beljan-Zdravkovic, T. Francis, A.L. Jenkins, L.A. Leiter, R.G. Josse, Z. Xu, J. Am. Coll. Nutr. 19 (2000) 738–744.

[23]V. Vuksan, J.L. Sievenpiper, V.Y. Koo, T. Francis, U. Beljan-Zdravkovic, Z. Xu, E. Vidgen, Arch. Intern. Med. 160 (2000) 1009–1013.

[24]V. Vuksan, J.L. Sievenpiper, J. Wong, Z. Xu, U. Beljan-Zdravkovic, J.T. Arnason, V. Assinewe, M.P. Stavro, A.L. Jenkins, L.A. Leiter, T. Francis, Am. J. Clin. Nutr. 73 (2001) 753–758.

[25]L.R. De Souza, A.L. Jenkins, E. Jovanovski, D. Rahelić, V. Vuksan, J. Ethnopharmacol. 159 (2015) 55–61.

[26]C.-Z. Wang, C. Yu, X.-D. Wen, L. Chen, C.-F. Zhang, T. Calway, Y. Qiu, Y. Wang, Z. Zhang, S. Anderson, Y. Wang, W. Jia, C.-S. Yuan, Cancer Prev. Res. 9 (2016) 803–811.

[27]C.-Z. Wang, W.-H. Huang, C.-F. Zhang, J.-Y. Wan, Y. Wang, C. Yu, S. Williams, T.-C. He, W. Du, M.W. Musch, E.B. Chang, C.-S. Yuan, Clin. Transl. Oncol. 20 (2018) 302–312.

[28]R. Zhou, D. He, J. Xie, Q. Zhou, H. Zeng, H. Li, L. Huang, Front. Immunol. 12 (2021) 665901.

[29]C.-Z. Wang, H. Yao, C.-F. Zhang, L. Chen, J.-Y. Wan, W.-H. Huang, J. Zeng, Q.-H. Zhang, Z. Liu, J. Yuan, Y. Bi, C. Sava-Segal, W. Du, M. Xu, C.-S. Yuan, Int. Immunopharmacol. 64 (2018) 246–251.

[30]C.S. Yuan, X. Wang, J.A. Wu, A.S. Attele, J.T. Xie, M. Gu, Phytomedicine 8 (2001) 178–183.

[31]J. Wu, S. Saovieng, I.-S. Cheng, T. Liu, S. Hong, C.-Y. Lin, I.-C. Su, C.-Y. Huang, C.-H. Kuo, J. Ginseng Res. (2018).

[32]C.-W. Hou, S.-D. Lee, C.-L. Kao, I.-S. Cheng, Y.-N. Lin, S.-J. Chuang, C.-Y. Chen, J.L. Ivy, C.-Y. Huang, C.-H. Kuo, PLoS One 10 (2015) e0116387.

[33]M. Estaki, E.G. Noble, Appl. Physiol. Nutr. Metab. 40 (2015) 116–121.



Panax ginseng Root Extract

COMMON NAME

Ginseng | Korean ginseng | Asian ginseng | Ginseng radix


TOP BENEFITS OF PANAX GINSENG ROOT EXTRACT

Supports general immune health*

Supports upper respiratory health*

Supports cognitive function*


WHAT IS PANAX GINSENG ROOT EXTRACT?

The roots of Panax ginseng have been used for thousands of years in China, Korea, and Japan. In these traditions, it was used as a Qi tonic to promote strength, restore vitality, support energy, and to quiet the spirit. “Panax” means “all-healing” in Greek. It is aptly named, based on both its traditional uses and modern scientific research [1]. P. ginseng is characterized as an adaptogen—it is used for invigorating and fortifying in times of higher stress or greater demands. P. ginseng is also used for supporting the capacity for mental and physical work. A great deal of the research on it P. ginseng has been related to the immune system, where it acts as an immune adaptogen, supporting both the innate and adaptive immune systems [2]. The main bioactive compounds of Panax ginseng are ginsenosides [3].


NEUROHACKER’S PANAX GINSENG  ROOT EXTRACT SOURCING

Panax ginseng Root Extract is made from dried roots extracted according to the European Pharmacopoeia. 

Panax ginseng Root Extract is a 3-4:1 extract standardized to contain not less than 4% ginsenosides.

Panax ginseng Root Extract is non-GMO, Halal, Kosher, gluten-free, and vegan.


PANAX GINSENG  ROOT EXTRACT DOSING PRINCIPLES AND RATIONALE

Because Panax ginseng is an adaptogen, we consider dosing to follow hormetic principles (see Neurohacker Dosing Principles). Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone. The established daily dose range for Panax ginseng root extracts standardized for 4% ginsenosides is 40-200 mg. Our dosage is consistent with this established dosage range.*


PANAX GINSENG KEY MECHANISMS

Supports healthy immune function* 

Supports general immune health [4–8]

Supports innate immunity [4,9–16]

Supports adaptive immunity [4,5,9–12,15–17]

Supports cellular intrinsic immune defenses [18–25] 

Supports mucosal immunity [26,27]

Supports immune tolerance [28–34] 

Supports healthy dendritic cell function [10]

Supports healthy natural killer cell function [4,9,11–16]

Supports healthy macrophage function [9,11,35]

Supports healthy T cell function [9–11,15]

Supports healthy B cell function [4,5,11,12,15–17,36]

Supports immune signaling [5,9,11,27,37–40]

Supports immune organ function [38]


Supports a healthy gut microbiota*

Supports gut microbiota [27,41,42]


Supports brain function*

Supports cognitive performance [43–51]

Supports against mental fatigue [43,44]

Supports brain metabolism [52]

Supports neuroprotection [53–56]


Promotes healthy aging*

Supports antioxidant defenses [38,54,57–61]

Supports Nrf2 signaling [9,51,62–66]

Supports phase II detox enzymes [9]

Supports autophagy [53,67–77]

Supports AMPK signaling [68,78]

Supports mitochondrial function [61,74,79–86]

Supports healthy blood glucose levels [43,44,87]

Modulates advanced glycation end product (AGE) production [57,59,60,88–92]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]A.R. Bilia, M.C. Bergonzi, J. Ginseng Res. 44 (2020) 179–193.
[2] S.-W. Kang, H.-Y. Min, Journal of Ginseng Research 36 (2012) 354–368.
[3] K.W. Leung, A.S.-T. Wong, Chin. Med. 5 (2010) 20.
[4] F. Scaglione, G. Cattaneo, M. Alessandria, R. Cogo, Drugs Exp. Clin. Res. 22 (1996) 65–72.
[5] F.S. Quan, R.W. Compans, Y.-K. Cho, S.-M. Kang, Vaccine 25 (2007) 272–282.
[6] F. Scaglione, K. Weiser, M. Alessandria, Clin. Drug Investig. 21 (2001) 41–45.
[7] J.K. Seida, T. Durec, S. Kuhle, Evid. Based. Complement. Alternat. Med. 2011 (2011) 282151.
[8] J.-W. Jung, H.-R. Kang, G.-E. Ji, M.-S. Park, W.-J. Song, M.-H. Kim, J.-W. Kwon, T.-W. Kim, H.-W. Park, S.-H. Cho, K.-U. Min, Allergy Asthma Immunol. Res. 3 (2011) 103–110.
[9] L.-X. Chen, Y.-L. Qi, Z. Qi, K. Gao, R.-Z. Gong, Z.-J. Shao, S.-X. Liu, S.-S. Li, Y.-S. Sun, Molecules 24 (2019).
[10] M. Takei, E. Tachikawa, A. Umeyama, Biomark. Insights 3 (2008) 269–286.
[11] L.-X. He, J.-W. Ren, R. Liu, Q.-H. Chen, J. Zhao, X. Wu, Z.-F. Zhang, J.-B. Wang, G. Pettinato, Y. Li, Food Funct. 8 (2017) 3523–3532.
[12] Y.H. Jie, S. Cammisuli, M. Baggiolini, Agents Actions 15 (1984) 386–391.
[13] K. Takeda, K. Okumura, Evid. Based. Complement. Alternat. Med. 2015 (2015) 603198.
[14] J.Y. Kim, D.R. Germolec, M.I. Luster, Immunopharmacol. Immunotoxicol. 12 (1990) 257–276.
[15] C.-J. Liou, W.-C. Huang, J. Tseng, Immunopharmacol. Immunotoxicol. 28 (2006) 227–240.
[16] V.K. Singh, S.S. Agarwal, B.M. Gupta, Planta Med. 50 (1984) 462–465.
[17] C.-J. Liou, W.-C. Huang, J. Tseng, Am. J. Chin. Med. 33 (2005) 651–661.
[18] S. Wright, E. Altman, J. Microbiol. Biotechnol. 30 (2020) 101–108.
[19] E.H. Park, J. Yum, K.B. Ku, H.M. Kim, Y.M. Kang, J.C. Kim, J.A. Kim, Y.K. Kang, S.H. Seo, J. Ginseng Res. 38 (2014) 40–46.
[20] Y. Wang, Y.-J. Jung, K.-H. Kim, Y. Kwon, Y.-J. Kim, Z. Zhang, H.-S. Kang, B.-Z. Wang, F.-S. Quan, S.-M. Kang, Viruses 10 (2018).
[21] S.Y. Yin, H.J. Kim, H.-J. Kim, Biol. Pharm. Bull. 36 (2013) 1002–1007.
[22] D.-G. Yoo, M.-C. Kim, M.-K. Park, J.-M. Song, F.-S. Quan, K.-M. Park, Y.-K. Cho, S.-M. Kang, J. Med. Food 15 (2012) 855–862.
[23] D.-G. Yoo, M.-C. Kim, M.-K. Park, K.-M. Park, F.-S. Quan, J.-M. Song, J.J. Wee, B.-Z. Wang, Y.-K. Cho, R.W. Compans, S.-M. Kang, PLoS One 7 (2012) e33678.
[24] J.S. Lee, Y.-N. Lee, Y.-T. Lee, H.S. Hwang, K.-H. Kim, E.-J. Ko, M.-C. Kim, S.-M. Kang, Nutrients 7 (2015) 1021–1036.
[25] J.S. Lee, E.-J. Ko, H.S. Hwang, Y.-N. Lee, Y.-M. Kwon, M.-C. Kim, S.-M. Kang, Int. J. Mol. Med. 34 (2014) 183–190.
[26] M. Sumiyoshi, M. Sakanaka, Y. Kimura, J. Ethnopharmacol. 132 (2010) 206–212.
[27] Y. Sun, S. Chen, R. Wei, X. Xie, C. Wang, S. Fan, X. Zhang, J. Su, J. Liu, W. Jia, X. Wang, Food Funct. 9 (2018) 3547–3556.
[28] J.-I. Lee, K.S. Park, I.-H. Cho, J. Ginseng Res. 43 (2019) 342–348.
[29] J. Kim, H. Byeon, K. Im, H. Min, Food Sci. Biotechnol. 27 (2018) 227–232.
[30] M.J. Lee, M. Jang, J. Choi, B.S. Chang, D.Y. Kim, S.-H. Kim, Y.-S. Kwak, S. Oh, J.-H. Lee, B.-J. Chang, S.-Y. Nah, I.-H. Cho, Mol. Neurobiol. 53 (2016) 1977–2002.
[31] J. Jhun, J. Lee, J.-K. Byun, E.-K. Kim, J.-W. Woo, J.-H. Lee, S.-K. Kwok, J.-H. Ju, K.-S. Park, H.-Y. Kim, S.H. Park, M.-L. Cho, Mediators Inflamm. 2014 (2014) 351856.
[32] G.N. Oh, S.W. Son, J. Ginseng Res. 36 (2012) 391–395.
[33] J.-K. Kim, J.-Y. Kim, S.-E. Jang, M.-S. Choi, H.-M. Jang, H.-H. Yoo, D.-H. Kim, Am. J. Chin. Med. 46 (2018) 1879–1897.
[34] S.B. Heo, S.W. Lim, J.Y. Jhun, M.L. Cho, B.H. Chung, C.W. Yang, J. Ginseng Res. 40 (2016) 18–27.
[35] J. Hao, H. Hu, J. Liu, X. Wang, X. Liu, J. Wang, M. Niu, Y. Zhao, X. Xiao, Evid. Based. Complement. Alternat. Med. 2019 (2019) 3630260.
[36] M.L. Xu, H.J. Kim, Y.R. Choi, H.-J. Kim, J. Ginseng Res. 36 (2012) 396–402.
[37] M. Pannacci, V. Lucini, F. Colleoni, C. Martucci, S. Grosso, P. Sacerdote, F. Scaglione, Brain Behav. Immun. 20 (2006) 546–551.
[38] J. Sun, L. Zhang, J. Zhang, R. Ran, Y. Shao, J. Li, D. Jia, Y. Zhang, M. Zhang, L. Wang, Y. Wang, Int. Immunopharmacol. 58 (2018) 94–102.
[39] H. Mohammadi, A. Hadi, H. Kord-Varkaneh, A. Arab, M. Afshari, A.J.R. Ferguson, E. Ghaedi, Phytother. Res. 33 (2019) 1991–2001.
[40] H.L. Jung, H.E. Kwak, S.S. Kim, Y.C. Kim, C.D. Lee, H.K. Byurn, H.Y. Kang, Am. J. Chin. Med. 39 (2011) 441–450.
[41] M.-Y. Song, B.-S. Kim, H. Kim, J. Ginseng Res. 38 (2014) 106–115.
[42] Sun Y.-F., Zhang X., Wang X.-Y., Jia W., Zhongguo Zhong Yao Za Zhi 43 (2018) 3927–3932.
[43] J.L. Reay, D.O. Kennedy, A.B. Scholey, J. Psychopharmacol. 19 (2005) 357–365.
[44] J.L. Reay, D.O. Kennedy, A.B. Scholey, J. Psychopharmacol. 20 (2006) 771–781.
[45] S.I. Sünram-Lea, R.J. Birchall, K.A. Wesnes, O. Petrini, Curr. Top. Nutraceutical Res. 3 (2005) 65–74.
[46] D.O. Kennedy, C.F. Haskell, K.A. Wesnes, A.B. Scholey, Pharmacol. Biochem. Behav. 79 (2004) 401–411.
[47] D.O. Kennedy, A.B. Scholey, K.A. Wesnes, Physiol. Behav. 75 (2002) 739–751.
[48] A.B. Scholey, D.O. Kennedy, Hum. Psychopharmacol. 17 (2002) 35–44.
[49] D.O. Kennedy, A.B. Scholey, K.A. Wesnes, Nutr. Neurosci. 4 (2001) 295–310.
[50] L. D’Angelo, R. Grimaldi, M. Caravaggi, M. Marcoli, E. Perucca, S. Lecchini, G.M. Frigo, A. Crema, J. Ethnopharmacol. 16 (1986) 15–22.
[51] Y. Lee, S. Oh, J. Ginseng Res. 39 (2015) 250–256.
[52] M.M. Samira, M.A. Attia, M. Allam, O. Elwan, J. Int. Med. Res. 13 (1985) 342–348.
[53] Y. Li, F. Wang, Y. Luo, J. Surg. Res. 207 (2017) 181–189.
[54] X. Tan, J. Gu, B. Zhao, S. Wang, J. Yuan, C. Wang, J. Chen, J. Liu, L. Feng, X. Jia, J. Ginseng Res. 39 (2015) 116–124.
[55] D. Kim, H. Jeon, S. Ryu, S. Koo, K.-T. Ha, S. Kim, PLoS One 11 (2016) e0164906.
[56] J.M. Van Kampen, D.B. Baranowski, C.A. Shaw, D.G. Kay, Exp. Gerontol. 50 (2014) 95–105.
[57] J. Li, D. Cai, X. Yao, Y. Zhang, L. Chen, P. Jing, L. Wang, Y. Wang, Int. J. Mol. Sci. 17 (2016).
[58] S. Park, C.-S. Kim, J. Min, S.H. Lee, Y.-S. Jung, J. Nutr. Sci. Vitaminol. 60 (2014) 159–166.
[59] H.Y. Kim, K.S. Kang, N. Yamabe, T. Yokozawa, Am. J. Chin. Med. 36 (2008) 989–1004.
[60] K.S. Kang, N. Yamabe, H.Y. Kim, J.H. Park, T. Yokozawa, Eur. J. Pharmacol. 591 (2008) 266–272.
[61] E. González-Burgos, C. Fernández-Moriano, R. Lozano, I. Iglesias, M.P. Gómez-Serranillos, Food Chem. Toxicol. 109 (2017) 38–47.
[62] G. Carota, M. Raffaele, V. Sorrenti, L. Salerno, V. Pittalà, S. Intagliata, Fitoterapia 139 (2019) 104370.
[63] L. Liu, M.G. Kelly, E.L. Wierzbicki, I.C. Escober-Nario, M.K. Vollmer, S. Doré, Antioxidants (Basel) 8 (2019).
[64] L. Liu, M.K. Vollmer, A.S. Ahmad, V.M. Fernandez, H. Kim, S. Doré, Free Radic. Biol. Med. 131 (2019) 98–114.
[65] C.Y. Kim, B. Kang, H.J. Suh, H.-S. Choi, Biomed. Pharmacother. 108 (2018) 1507–1516.
[66] C.L.L. Saw, A.Y. Yang, D.C. Cheng, S.S.-S. Boyanapalli, Z.-Y. Su, T.O. Khor, S. Gao, J. Wang, Z.-H. Jiang, A.-N.T. Kong, Chem. Res. Toxicol. 25 (2012) 1574–1580.
[67] H.-H. Park, S.-W. Choi, G.J. Lee, Y.-D. Kim, H.-J. Noh, S.-J. Oh, I. Yoo, Y.-J. Ha, G.-B. Koo, S.-S. Hong, S.W. Kwon, Y.-S. Kim, J. Ginseng Res. 43 (2019) 86–94.
[68] Y. Chung, S. Jeong, H.S. Choi, S. Ro, J.S. Lee, J.K. Park, Anim Cells Syst (Seoul) 22 (2018) 382–389.
[69] Z.-M. Xu, C.-B. Li, Q.-L. Liu, P. Li, H. Yang, Int. J. Mol. Sci. 19 (2018).
[70] P. Zhou, W. Xie, Y. Luo, S. Lu, Z. Dai, R. Wang, X. Zhang, G. Li, G. Sun, X. Sun, Molecules 23 (2018).
[71] X.-Y. Zhang, K. Sun, Q. Zhu, T. Song, Y. Liu, Kaohsiung J. Med. Sci. 33 (2017) 535–542.
[72] P. Wang, C. Lin, S. Wu, K. Huang, Y. Wang, X. Bao, F. Zhang, Z. Huang, H. Teng, Cell. Mol. Neurobiol. 38 (2018) 679–690.
[73] S.W. Lim, L. Jin, K. Luo, J. Jin, C.W. Yang, Lab. Invest. 97 (2017) 1271–1281.
[74] J.-H. Moon, J.-H. Lee, Y.-J. Lee, S.-Y. Park, Oncotarget 7 (2016) 85697–85708.
[75] X. Zheng, W. Chen, H. Hou, J. Li, H. Li, X. Sun, L. Zhao, X. Li, Biomed. Pharmacother. 85 (2017) 620–626.
[76] D.-G. Kim, K.H. Jung, D.-G. Lee, J.-H. Yoon, K.S. Choi, S.W. Kwon, H.-M. Shen, M.J. Morgan, S.-S. Hong, Y.-S. Kim, Oncotarget 5 (2014) 4438–4451.
[77] S.W. Lim, K.C. Doh, L. Jin, J. Jin, S.G. Piao, S.B. Heo, B.H. Chung, C.W. Yang, Nephrology 19 (2014) 490–499.
[78] H.-S. Yoo, J.M. Kim, E. Jo, C.-K. Cho, S.-Y. Lee, H.S. Kang, M.-G. Lee, P.-Y. Yang, I.-S. Jang, Oncol. Rep. 37 (2017) 3287–3296.
[79] Y. Zhang, X. Yang, S. Wang, S. Song, J. Agric. Food Chem. 67 (2019) 10048–10058.
[80] S.J. Shin, S.G. Jeon, J.-I. Kim, Y.-O. Jeong, S. Kim, Y.H. Park, S.-K. Lee, H.H. Park, S.B. Hong, S. Oh, J.-Y. Hwang, H.S. Kim, H. Park, Y. Nam, Y.Y. Lee, J.-J. Kim, S.-H. Park, J.-S. Kim, M. Moon, Int. J. Mol. Sci. 20 (2019).
[81] J.-K. Park, J.-Y. Shim, A.-R. Cho, M.-R. Cho, Y.-J. Lee, J. Med. Food 21 (2018) 544–550.
[82] L. Bao, X. Cai, J. Wang, Y. Zhang, B. Sun, Y. Li, Nutrients 8 (2016).
[83] X.-T. Li, R. Chen, L.-M. Jin, H.-Y. Chen, Am. J. Chin. Med. 37 (2009) 1139–1152.
[84] A.C. Cabral de Oliveira, A.C. Perez, J.G. Prieto, I.D.G. Duarte, A.I. Alvarez, J. Ethnopharmacol. 97 (2005) 211–214.
[85] J. Voces, A.C. Cabral de Oliveira, J.G. Prieto, L. Vila, A.C. Perez, I.D.G. Duarte, A.I. Alvarez, Braz. J. Med. Biol. Res. 37 (2004) 1863–1871.
[86] Y. Fu, L.L. Ji, J. Nutr. 133 (2003) 3603–3609.
[87] J.L. Reay, D.O. Kennedy, A.B. Scholey, Br. J. Nutr. 96 (2006) 639–642.
[88] C.-S. Kim, K. Jo, J.S. Kim, M.-K. Pyo, J. Kim, BMC Complement. Altern. Med. 17 (2017) 430.
[89] K.S. Kang, J. Ham, Y.-J. Kim, J.H. Park, E.-J. Cho, N. Yamabe, J. Ginseng Res. 37 (2013) 379–388.
[90] H.Y. Quan, D.Y. Kim, S.H. Chung, J. Ginseng Res. 37 (2013) 187–193.
[91] H.Y. Kim, K.S. Kang, N. Yamabe, R. Nagai, T. Yokozawa, J. Agric. Food Chem. 55 (2007) 8491–8497.
[92] K.S. Kang, H.Y. Kim, N. Yamabe, R. Nagai, T. Yokozawa, Biol. Pharm. Bull. 29 (2006) 1678–1684.

Sensoril® Ashwagandha Withania somnifera Root and Leaf Extract

Common Name

Ashwagandha | Indian ginseng


Top Benefits of Sensoril® Ashwagandha

Supports a healthy stress response*

Supports exercise performance and energy*

Supports healthy weight* 

Supports mitochondrial efficiency* 

Supports brain function and mental cognition* 

Supports sleep*


What is Sensoril® Ashwagandha?

Ashwagandha is an Ayurvedic herb with adaptogenic properties—it’s often referred to as “Indian ginseng.” Ashwagandha has a long history of use and has been reported to have several health-promoting effects, supporting healthy energy, metabolism, stress response, physical performance, sleep, joint health, and cognitive performance. The novel active constituents are a group of plant compounds called withanolide glycosides. Sensoril® root and leaf extract is standardized for withanolide glycoside content.*


Neurohacker’s Sensoril® Ashwagandha Sourcing

Sensoril® has been clinically tested in 10 randomized, double-blind, placebo-controlled human trials.

Created by Natreon Inc., a leader in scientifically studied and tested Ayurvedic ingredients.

Leaf and root extract triple standardized to contain a minimum of 10% withanolide glycosides, the main bioactive; a minimum of 32% oligosaccharides, which increase the bioavailability of the withanolide glycosides; and a maximum of 0.5% free withanolides (as Withaferin A).

Protected by multiple U.S. patents with self-affirmed generally recognized as safe (GRAS) status). 

Sensoril® is vegan, non-GMO, gluten-free, Kosher and Halal certified.


Sensoril® Ashwagandha Dosing Principles and Rationale

We consider Ashwagandha to be an herbal adaptogen, so expect it to follow hormetic dosing principles (see Neurohacker Dosing Principles). Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone; it’s just as important not to be above it. So, it’s important to identify the lowest dose that can produce the desired response. Sensoril®—the standardized extract we use—produced a threshold response in a study that gave different daily dosages—125 mg, 250 mg, and 500 mg. Effect size was slightly greater for the higher doses, but most of the change was evident with the lowest dose [1]. We opted for this lower dose to be consistent with a core hormetic principle—only do or use as much as something as would be needed to stimulate the desired response.*


Withania somnifera Key Mechanisms 

Supports mitochondrial structure and function*

Supports mitochondrial membrane potential and structural integrity [2]

Protects from mitochondrial damage [2]

Protects from mitochondrial membrane permeabilization [3]

Protects from complex I-V Inhibition (protects electron transport chain and oxidative phosphorylation performance) [2,4–6]

Upregulates citric acid cycle enzymes [6]


Promotes exercise performance*

Supports endurance performance [7,8]

Supports muscle strength [9,10]

Supports post-exercise recovery [10]


Supports healthy metabolism*

Supports healthy insulin sensitivity [11–15]

Supports healthy blood glucose levels [12–16]

Supports healthy leptin signaling [11,15]


Promotes a healthy body weight*

Supports healthy body weight [11,15]

Supports healthy feeding behaviors [11,17]

Supports lean mass [10]


Enhances antioxidant defenses*

Supports antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [2,4,5,16,18]

Replenishes glutathione (GSH) levels [2,4,16]

Counters oxidative stress and reactive oxygen species levels [2–4,19]


Supports brain function*

Supports cognitive and psychomotor performance [20,21]

Supports memory, executive function, attention, and information processing speed [22]

Modulates GABAergic neurotransmission [23,24]

GABA receptor agonism [25–27] 

Supports dopamine levels [4]

Influences the basal activity levels of acetylcholine esterase [4]

Supports neuroprotective functions [2,4,5]

Influences neural cytokine signaling [11]


Promotes healthy sleep*

Shortens sleep onset latency [23,28]

Supports sleep efficiency [28]

Supports quality of sleep [9,28]

Extends the duration of slow wave sleep [23]

Extends total sleep time [23]


Supports a healthy mood and stress response*

Supports a calm mood [11,28]

Supports stress management [1,17,29]

Downregulates serum cortisol levels [1,17,29]


Supports healthy thyroid function*

Supports thyroid function [30–32]


Promotes healthy aging and longevity*

Supports lifespan extension (Caenorhabditis elegans) [19,33]

Supports insulin-like growth factor-1 (IGF-1) signaling pathway [19,33]

Influences α-synuclein and amyloid-β aggregation [19]

Supports FOXO3A and SIRT3 [34]

Influences the expression of immune signaling molecules [11–13]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]B. Auddy, J. Hazra, A. Mitra, B. Abedon, S. Ghosal, Journal of American Nutraceutical Association 11 (2008) 50–56.

[2]A. Sood, A. Mehrotra, D.K. Dhawan, R. Sandhir, Metab. Brain Dis. 33 (2018) 1261–1274.

[3]P. Parihar, R. Shetty, P. Ghafourifar, M.S. Parihar, Cell. Mol. Biol. 62 (2016) 73–83.

[4]M.J. Manjunath, Muralidhara, J. Food Sci. Technol. 52 (2015) 1971–1981.

[5]P. Kumar, A. Kumar, J. Med. Food 12 (2009) 591–600.

[6]P. Senthilnathan, R. Padmavathi, V. Magesh, D. Sakthisekaran, Life Sci. 78 (2006) 1010–1014.

[7]J.S. Sandhu, B. Shah, S. Shenoy, S. Chauhan, G.S. Lavekar, M.M. Padhi, Int. J. Ayurveda Res. 1 (2010) 144–149.

[8]B. Choudhary, A. Shetty, D.G. Langade, Ayu 36 (2015) 63–68.

[9]A.A. Raut, N.N. Rege, F.M. Tadvi, P.V. Solanki, K.R. Kene, S.G. Shirolkar, S.N. Pandey, R.A. Vaidya, A.B. Vaidya, J. Ayurveda Integr. Med. 3 (2012) 111–114.

[10]S. Wankhede, D. Langade, K. Joshi, S.R. Sinha, S. Bhattacharyya, J. Int. Soc. Sports Nutr. 12 (2015) 43.

[11]T. Kaur, G. Kaur, J. Neuroinflammation 14 (2017) 201.

[12]M.R. Shahraki, Z. Samadi Noshahr, H. Ahmadvand, A. Nakhaie, J. Basic Clin. Physiol. Pharmacol. 27 (2016) 387–391.

[13]Z. Samadi Noshahr, M.R. Shahraki, H. Ahmadvand, D. Nourabadi, A. Nakhaei, Rep Biochem Mol Biol 3 (2015) 62–67.

[14]T. Anwer, M. Sharma, K.K. Pillai, M. Iqbal, Basic Clin. Pharmacol. Toxicol. 102 (2008) 498–503.

[15]J. Lee, J. Liu, X. Feng, M.A. Salazar Hernández, P. Mucka, D. Ibi, J.W. Choi, U. Ozcan, Nat. Med. 22 (2016) 1023–1032.

[16]T. Anwer, M. Sharma, K.K. Pillai, G. Khan, Acta Pol. Pharm. 69 (2012) 1095–1101.

[17]D. Choudhary, S. Bhattacharyya, K. Joshi, J. Evid. Based Complementary Altern. Med. 22 (2017) 96–106.

[18]S.K. Gupta, A. Dua, B.P.S. Vohra, Drug Metabol. Drug Interact. 19 (2003) 211–222.

[19]B.A. Akhoon, S. Pandey, S. Tiwari, R. Pandey, Exp. Gerontol. 78 (2016) 47–56.

[20]U. Pingali, R. Pilli, N. Fatima, Pharmacognosy Res. 6 (2014) 12–18.

[21]K.N.R. Chengappa, C.R. Bowie, P.J. Schlicht, D. Fleet, J.S. Brar, R. Jindal, J. Clin. Psychiatry 74 (2013) 1076–1083.

[22]D. Choudhary, S. Bhattacharyya, S. Bose, J. Diet. Suppl. 14 (2017) 599–612.

[23]A. Kumar, H. Kalonia, Indian J. Pharm. Sci. 70 (2008) 806–810.

[24]M. Candelario, E. Cuellar, J.M. Reyes-Ruiz, N. Darabedian, Z. Feimeng, R. Miledi, A. Russo-Neustadt, A. Limon, J. Ethnopharmacol. 171 (2015) 264–272.

[25]A.K. Mehta, P. Binkley, S.S. Gandhi, M.K. Ticku, Indian J. Med. Res. 94 (1991) 312–315.

[26]J.P. Bhattarai, S.A. Park, S.K. Han, Phytotherapy Research (2009).

[27]H. Yin, D.H. Cho, S.J. Park, S.K. Han, The American Journal of Chinese Medicine 41 (2013) 1043–1051.

[28]D. Langade, S. Kanchi, J. Salve, K. Debnath, D. Ambegaokar, Cureus 11 (2019) e5797.

[29]K. Chandrasekhar, J. Kapoor, S. Anishetty, Indian J. Psychol. Med. 34 (2012) 255–262.

[30]A.K. Sharma, I. Basu, S. Singh, J. Altern. Complement. Med. 24 (2018) 243–248.

[31]J.M. Gannon, P.E. Forrest, K.N. Roy Chengappa, J. Ayurveda Integr. Med. 5 (2014) 241–245.

[32]R. Jatwa, A. Kar, Phytother. Res. 23 (2009) 1140–1145.

[33]B.A. Akhoon, L. Rathor, R. Pandey, Exp. Gerontol. 104 (2018) 113–117.

[34]R. Pradhan, R. Kumar, S. Shekhar, N. Rai, A. Ambashtha, J. Banerjee, M. Pathak, S.N. Dwivedi, S. Dey, A.B. Dey, Exp. Gerontol. 95 (2017) 9–15.

Rhodiola rosea Root

Scientific Name:
Rhodiola rosea

COMMON NAME

Golden Root | Arctic Root | Roseroot


TOP BENEFITS OF RHODIOLA ROSEA

Supports brain health and cognitive performance *
Supports adaptation to stress *
Supports mood *

WHAT IS RHODIOLA ROSEA?

Rhodiola rosea is an adaptogenic herb with a long history of folk use in Russia, Scandinavia, Baltic countries, and Asia. Its traditional uses included being a tonic to help counter fatigue and enhance the capacity for mental and physical work performance. R. rosea grows in cold regions and in mountainous parts of Europe through Central Asia. This ability to adapt to extreme temperatures and environments may be part of the reason R. rosea was studied (and eventually categorized as an adaptogen) by Russian researchers. Decades of research support this adaptogenic categorization, with R. rosea supporting resistance to a variety of different types of stressors. R. rosea contains many biologically active substances; Its rosavins (rosavin, rosin, and rosarian) and salidroside are the major bioactive compounds for producing standardized extracts. Rhodiola rosea main uses are in helping with adaptation to physically and mentally fatiguing circumstances and supporting energy, alertness, concentration, mental stamina, and mood.*

NEUROHACKER’S RHODIOLA ROSEA SOURCING

Rhodiola rosea is an extract made from the plant's roots and uses about a 50:1 herb to extract ratio.  
Rhodiola rosea root extract is standardized to contain not less than 3% rosavins and 1% salidroside.
Rhodiola rosea root extract is non-GMO and vegan.

RHODIOLA ROSEA DOSING PRINCIPLES AND RATIONALE

We consider Rhodiola rosea to be an herbal adaptogen, so expect it to follow hormetic dosing principles. Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response (see Neurohacker Dosing Principles) and don’t follow “more is better” dosing principles. This is consistent with the comparative dosing information on R. rosea root, where for example, a dose of 370 mg supported capacity for mental work, while a higher dose had similar (but not greater) benefits [1]. Standardized R. rosea root extracts have most commonly been used in human studies at doses ranging from 100 mg to 400 mg/day—in the nootropic community a dose between 150-300 mg a day is commonly used. We use a dose within this range.*

KEY MECHANISMS

Supports brain function and cognition*

Supports attention, capacity for mental work, and resistance to mental fatigue [1–6]

Supports mental and physical performance during stress [1–4]

Supports a healthy mood [7–9]

Supports serotonin levels [10]

Supports neuroplasticity and neurogenesis [11,12]

Supports neuroprotective functions [13–18]

Supports healthy levels of stress hormones and other stress response mediators [2,19–22]

Supports β-endorphin signaling [22,23]

Influences monoamine oxidase (MAO) A and B [24,25]

Influences acetylcholinesterase [13,25]


Promotes physical stamina*

Supports resistance to physical fatigue [3]

Supports endurance performance [26]

Supports exercise-induced antioxidant defenses [27]

 

Promotes healthy aging and longevity*

Supports mitochondrial function [17,28,29]

Supports antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPX], glutathione reductase [GR]) [13,15,27,30]

Supports glutathione and thioredoxin levels [15,17]

Extends lifespan (Drosophila melanogaster and Caenorhabditis elegans) [31–33]


Complementary ingredients*

Ginkgo biloba for cognitive function [34]

Saffron for mood support [35] 


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]V.A. Shevtsov, B.I. Zholus, V.I. Shervarly, V.B. Vol’skij, Y.P. Korovin, M.P. Khristich, N.A. Roslyakova, G. Wikman, Phytomedicine 10 (2003) 95–105.
[2]E.M. Olsson, B. von Schéele, A.G. Panossian, Planta Med. 75 (2009) 105–112.
[3]A.A. Spasov, G.K. Wikman, V.B. Mandrikov, I.A. Mironova, V.V. Neumoin, Phytomedicine 7 (2000) 85–89.
[4]V. Darbinyan, A. Kteyan, A. Panossian, E. Gabrielian, G. Wikman, H. Wagner, Phytomedicine 7 (2000) 365–371.
[5]D. Edwards, A. Heufelder, A. Zimmermann, Phytother. Res. 26 (2012) 1220–1225.
[6]T. Koop, A. Dienel, M. Heldmann, T.F. Münte, Phytother. Res. 34 (2020) 3287–3297.
[7]M. Cropley, A.P. Banks, J. Boyle, Phytother. Res. 29 (2015) 1934–1939.
[8]A. Bystritsky, L. Kerwin, J.D. Feusner, J. Altern. Complement. Med. 14 (2008) 175–180.
[9]V. Darbinyan, G. Aslanyan, E. Amroyan, E. Gabrielyan, C. Malmström, A. Panossian, Nord. J. Psychiatry 61 (2007) 343–348.
[10]C. Mannucci, M. Navarra, E. Calzavara, A.P. Caputi, G. Calapai, Phytomedicine 19 (2012) 1117–1124.
[11]Q.G. Chen, Y.S. Zeng, Z.Q. Qu, J.Y. Tang, Y.J. Qin, P. Chung, R. Wong, U. Hägg, Phytomedicine 16 (2009) 830–838.
[12]C. Concerto, C. Infortuna, M.R.A. Muscatello, A. Bruno, R. Zoccali, E. Chusid, E. Aguglia, F. Battaglia, Complement. Ther. Med. 41 (2018) 141–146.
[13]J. Zhang, Y.-F. Zhen, Pu-Bu-Ci-Ren, L.-G. Song, W.-N. Kong, T.-M. Shao, X. Li, X.-Q. Chai, Behav. Brain Res. 244 (2013) 70–81.
[14]Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y.-K. Lin, Y. Li, Z.-Q. Zhong, W.Y. Chan, PLoS One 7 (2012) e29641.
[15]Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y. Li, P. Chung, Biomed. Environ. Sci. 22 (2009) 318–326.
[16]S.I. Jang, H.O. Pae, B.M. Choi, G.S. Oh, S. Jeong, H.J. Lee, H.Y. Kim, K.J. Kang, Y.G. Yun, Y.C. Kim, H.T. Chung, Immunopharmacol. Immunotoxicol. 25 (2003) 295–304.
[17]L. Zhang, H. Yu, X. Zhao, X. Lin, C. Tan, G. Cao, Z. Wang, Neurochem. Int. 57 (2010) 547–555.
[18]D.R. Palumbo, F. Occhiuto, F. Spadaro, C. Circosta, Phytother. Res. 26 (2012) 878–883.
[19]A. Panossian, M. Hambardzumyan, A. Hovhanissyan, G. Wikman, Drug Target Insights 2 (2007) 39–54.
[20]A. Panossian, G. Wikman, P. Kaur, A. Asea, Front. Neurosci. 6 (2012) 6.
[21]A. Panossian, G. Wikman, Pharmaceuticals 3 (2010) 188–224.
[22]I.B. Lishmanov, Z.V. Trifonova, A.N. Tsibin, L.V. Maslova, L.A. Dement’eva, Biull. Eksp. Biol. Med. 103 (1987) 422–424.
[23]G.S. Kelly, Altern. Med. Rev. 6 (2001) 293–302.
[24]D. van Diermen, A. Marston, J. Bravo, M. Reist, P.-A. Carrupt, K. Hostettmann, J. Ethnopharmacol. 122 (2009) 397–401.
[25]D. van Diermen, A. Marston, J. Bravo, M. Reist, P.A. Carrupt, K. Hostettmann, Planta Med. 74 (2008) PA202.
[26]K. De Bock, B.O. Eijnde, M. Ramaekers, P. Hespel, Int. J. Sport Nutr. Exerc. Metab. 14 (2004) 298–307.
[27]J. Xu, Y. Li, Mol. Med. Rep. 6 (2012) 1195–1198.
[28]S. Yu, M. Liu, X. Gu, F. Ding, Cell. Mol. Neurobiol. 28 (2008) 1067–1078.
[29]H. Zhong, H. Xin, L.-X. Wu, Y.-Z. Zhu, J. Pharmacol. Sci. 114 (2010) 399–408.
[30]Y. Zhu, Y.-P. Shi, D. Wu, Y.-J. Ji, X. Wang, H.-L. Chen, S.-S. Wu, D.-J. Huang, W. Jiang, DNA Cell Biol. 30 (2011) 809–819.
[31]S.E. Schriner, A. Abrahamyan, A. Avanessian, I. Bussel, S. Maler, M. Gazarian, M.A. Holmbeck, M. Jafari, Free Radic. Res. 43 (2009) 836–843.
[32]M. Jafari, J.S. Felgner, I.I. Bussel, T. Hutchili, B. Khodayari, M.R. Rose, C. Vince-Cruz, L.D. Mueller, Rejuvenation Res. 10 (2007) 587–602.
[33]F.A.C. Wiegant, S. Surinova, E. Ytsma, M. Langelaar-Makkinje, G. Wikman, J.A. Post, Biogerontology 10 (2009) 27–42.
[34]H.M. Al-Kuraishy, J Intercult Ethnopharmacol 5 (2016) 7–13.
[35]M. Bangratz, S.A. Abdellah, A. Berlin, C. Blondeau, A. Guilbot, M. Dubourdeaux, P. Lemoine, Neuropsychiatr. Dis. Treat. 14 (2018) 1821.

Holy Basil (Ocimum sanctum) Leaf Extract

COMMON NAME

Holy Basil | Sacred Basil | Tulsi | Tulasi


TOP BENEFITS OF HOLY BASIL

Supports a calm mood*

Supports cognitive function*

Support a healthy stress response*

Supports general immune health* 


WHAT IS HOLY BASIL?

Holy Basil (Ocimum sanctum; synonym Ocimum tenuiflorum) is a culinary and medicinal aromatic herb that has been used within Ayurvedic medicine for more than 3000 years [1]. In Ayurvedic medicine holy basil is called “tulsi,” which translates as “the incomparable one.” It is one of a small number of herbs categorized as Rasayana, the category applied to elixirs and tonic herbs prized for rejuvenation and revitalization. It was believed to guard the body from stress of all types while keeping the mind sharp and the body healthy. In modern times, holy basil is categorized as an adaptogen, supporting a healthy stress response. Holy basil also supports mood, cognition and immunity. Holy basil’s bioactive molecules include ursolic acid, rosmarinic acid, eugenol, ocimumosides A and B, ocimarin, apigenin and lutein [2,3].


NEUROHACKER’S HOLY BASIL SOURCING

Holy Basil is a leaf extract standardized to contain not less than 2% ursolic acid.

Holy Basil is Non-GMO and Vegan.


HOLY BASIL DOSING PRINCIPLES AND RATIONALE

Because holy basil is an Ayurvedic Rasayana herb, we consider dosing to follow hormetic principles similar to herbal adaptogens (see Neurohacker Dosing Principles ). Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone; it’s just as important not to be above it. For herbs that are adaptogens, especially when they will be used for extended periods of time, we think it’s important to identify the lowest dose that can produce many of the desired responses. Different doses of holy basil have been used in human studies. Functional benefits have occurred at low doses (~300mg) and at doses four-fold higher (1200mg). Considered collectively, human studies suggest holy basil dosing may be somewhat akin to the Pareto Principle (i.e., 80-20 rule), where 80%+ of the benefits happen at 20% of the dose. Our goal with holy basil, as with all ingredient choices, is to select the appropriate dose keeping in mind both the ingredient and the other ingredients being used in a formulation. In other words, if we are also supplying other adaptogen extracts, we are likely to use less holy basil than if the only herbal adaptogen we were using was holy basil.*


HOLY BASIL KEY MECHANISMS

Supports healthy mood and stress responses*

Supports a calm mood [4–11]

Supports a positive mental-emotional bias [6,9]

Supports healthy stress hormone levels [4,7,8,12,13]


Supports brain function*

Supports memory and learning [5,14,15]

Supports working memory [4]

Supports executive function [4]

Supports attention [6]

Supports sleep [5]

Supports serotonin signaling [16–18]

Supports dopamine signaling [16–18]

Supports adrenergic signaling [17,18]

Supports acetylcholine signaling [19,20]

Influences acetylcholinesterase (AChE) activity [19,21]

Supports choline acetyltransferase (ChAT) expression [14,22]

Supports brain antioxidant defenses [18,23–25]

Supports neuroprotective functions [15,18,23–27]


Supports healthy immune system function*

Supports innate immunity [28]

Supports adaptive immunity [28–31]


Promotes general health and wellbeing*

Supports gastroprotective functions [32,33]

Supports healthy metabolism [34,35]  


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]N. Jamshidi, M.M. Cohen, Evid. Based. Complement. Alternat. Med. 2017 (2017) 9217567.

[2]P. Pattanayak, P. Behera, D. Das, S. Panda, Pharmacognosy Reviews 4 (2010) 95.

[3]P. Gupta, D.K. Yadav, K.B. Siripurapu, G. Palit, R. Maurya, J. Nat. Prod. 70 (2007) 1410–1416.

[4]S. Sampath, S.C. Mahapatra, M.M. Padhi, R. Sharma, A. Talwar, Indian J. Physiol. Pharmacol. 59 (2015) 69–77.

[5]R.C. Saxena, R. Singh, P. Kumar, M.P.S. Negi, V.S. Saxena, P. Geetharani, J.J. Allan, K. Venkateshwarlu, Evid. Based. Complement. Alternat. Med. 2012 (2012) 894509.

[6]D. Bhattacharyya, T.K. Sur, U. Jana, P.K. Debnath, Nepal Med. Coll. J. 10 (2008) 176–179.

[7]E. Jothie Richard, R. Illuri, B. Bethapudi, S. Anandhakumar, A. Bhaskar, C. Chinampudur Velusami, D. Mundkinajeddu, A. Agarwal, Phytother. Res. 30 (2016) 805–814.

[8]R. Archana, A. Namasivayam, J. Ethnopharmacol. 73 (2000) 81–85.

[9]M. Chatterjee, P. Verma, R. Maurya, G. Palit, Pharm. Biol. 49 (2011) 477–483.

[10]L. Mohan, U.S.C. Rao, H.N. Gopalakrishna, V. Nair, Evid. Based. Complement. Alternat. Med. 2011 (2011).

[11]L.R. Bathala, C.V. Rao, S. Manjunath, S. Vinuta, R. Vemulapalli, J. Contemp. Dent. Pract. 13 (2012) 782–786.

[12]R. Archana, A. Namasivayam, Phytother. Res. 16 (2002) 579–580.

[13]K. Sembulingam, P. Sembulingam, A. Namasivayam, Indian J. Physiol. Pharmacol. 41 (1997) 139–143.

[14]D.L. Kusindarta, H. Wihadmadyatami, A.R. Jadi, S. Karnati, G. Lochnit, P. Hening, A. Haryanto, M.B. Auriva, M. Purwaningrum, Research in Veterinary Science 118 (2018) 431–438.

[15]S.C. Sarangi, S.S. Pattnaik, J. Katyal, T. Kaleekal, A.K. Dinda, J. Ethnopharmacol. 249 (2020) 112389.

[16]J. Samson, R. Sheela Devi, R. Ravindran, M. Senthilvelan, Pharmacol. Biochem. Behav. 83 (2006) 67–75.

[17]R. Ravindran, S.D. Rathinasamy, J. Samson, M. Senthilvelan, J. Pharmacol. Sci. 98 (2005) 354–360.

[18]A. Ahmad, N. Rasheed, K. Chand, R. Maurya, N. Banu, G. Palit, Indian J. Med. Res. 135 (2012) 548.

[19]K. Sembulingam, P. Sembulingam, A. Namasivayam, J. Ethnopharmacol. 96 (2005) 477–482.

[20]D.L. Kusindarta, H. Wihadmadyatami, A. Haryanto, Veterinary World 11 (2018) 135–140.

[21]V.V. Giridharan, R.A. Thandavarayan, V. Mani, T. Ashok Dundapa, K. Watanabe, T. Konishi, J. Med. Food 14 (2011) 912–919.

[22]P. Hening, M.B. Mataram Auriva, N. Wijayanti, D.L. Kusindarta, H. Wihadmadyatami, Vet World 11 (2018) 1237–1243.

[23]S.U. Yanpallewar, S. Rai, M. Kumar, S.B. Acharya, Pharmacol. Biochem. Behav. 79 (2004) 155–164.

[24]A. Ahmad, M.M. Khan, S.S. Raza, H. Javed, M. Ashafaq, F. Islam, M.M. Safhi, F. Islam, Neurol. Sci. 33 (2012) 1239–1247.

[25]J. Samson, R. Sheeladevi, R. Ravindran, Neurotoxicology 28 (2007) 679–685.

[26]H. Joshi, M. Parle, Indian J. Exp. Biol. 44 (2006) 133–136.

[27]Y.H. Siddique, M. Faisal, F. Naz, S. Jyoti, Rahul, Chin. J. Nat. Med. 12 (2014) 777–781.

[28]S. Mondal, S. Varma, V.D. Bamola, S.N. Naik, B.R. Mirdha, M.M. Padhi, N. Mehta, S.C. Mahapatra, J. Ethnopharmacol. 136 (2011) 452–456.

[29]A. Goel, D.K. Singh, S. Kumar, A.K. Bhatia, Asian Pac. J. Trop. Med. 3 (2010) 8–12.

[30]C.R. Jeba, R. Vaidyanathan, G. Rameshkumar, Int J on Pharmaceutical and Biomed Res 2 (2011) 33–38.

[31]P. Kaur, Robin, V.O. Makanjuola, R. Arora, B. Singh, S. Arora, Biomedicine & Pharmacotherapy 95 (2017) 1815–1829.

[32]R.K. Goel, K. Sairam, M. Dorababu, T. Prabha, C.V. Rao, Indian J. Exp. Biol. 43 (2005) 715–721.

[33]S. Mandal, D.N. Das, K. De, K. Ray, G. Roy, S.B. Chaudhuri, C.C. Sahana, M.K. Chowdhuri, Indian J. Physiol. Pharmacol. 37 (1993) 91–92.

[34]S. Satapathy, N. Das, D. Bandyopadhyay, S.C. Mahapatra, D.S. Sahu, M. Meda, Indian J. Clin. Biochem. 32 (2017) 357–363.

[35]P. Agrawal, V. Rai, R.B. Singh, Int. J. Clin. Pharmacol. Ther. 34 (1996) 406–409.

Amla (Emblica officinalis) Fruit Extract

Amla (Emblica officinalis) Fruit Extract COMMON NAME

Amla | Emblic | Indian Gooseberry | Amalaki | Emblic Myrobalan


TOP BENEFITS OF AMLA FRUIT

Supports healthy vision *

Supports brain health *

Supports healthy aging *

Supports maintenance of cardiovascular health *

Supports metabolic health *

Support healthy skin *


WHAT IS AMLA FRUIT?

Amla (the fruit from Phyllanthus emblica L. or Emblica officinalis Gaertn.) is one of the most important fruits in Ayurveda and in traditional healing systems in other parts of South and Southeast Asia. The name Amla derives from the Sanskrit word Amalaki, which means the “fruit of heaven”—the fruit was revered in both Hinduism and Buddhism. In Ayurveda, Amla is classified as a rasayana (i.e., a rejuvenator used for healthy aging), and is a tonic for Alochaka Pitta, which governs eyesight and is responsible for sight and thinking process, enabling us to see, perceive and analyse objects. Amla is used by itself, but also very commonly used as a core part of many poly-ingredient herbal combinations, such as Triphala (“three fruits”), which combines amla with two other types of myrobalan fruits. The most widely used part of the plant is the fruit, which has many health benefits due to its antioxidant and immunomodulatory activities. Its main bioactive compounds include tannins, alkaloids, polyphenols, minerals, and vitamins, including high levels of vitamin C. The high tannin content gives the fruit a sour and astringent taste. Amla fruit is the primary eye tonic medicine in Ayurveda. In traditional use, it was believed to preserve eyesight and relieve complaints related to eye strain and fatigue [1–3].*  


NEUROHACKER’S AMLA FRUIT SOURCING

Amla Fruit Extract is standardized for ≥45% tannins, ≥10% gallic acid, and ≥1% vitamin C.

Amla Fruit Extract is produced by Verdure Sciences®, a supplier of botanical extracts with an emphasis on developing scientifically-backed botanical extracts through clinical initiatives.* Verdure Sciences® values responsible and ethically sourced products. 

Amla Fruit Extract is non-GMO and vegan.


AMLA FRUIT DOSING PRINCIPLES AND RATIONALE

Since Amla is a Rasayana, we'd consider it to have adaptogen characteristics and follow hormetic dosing principles (see Neurohacker Dosing Principles) with the dose selected being within a range. In clinical studies, Amla fruit extracts have most commonly been used at doses of 250 mg and 500 mg, often taken twice daily [4–10]. When used in combination with other fruits or herbs, standardized Amla extracts have been used at lower doses—doses as low as 60 mg have been used [11]. Since we’re using a standardized Amla fruit extract combined with other fruits and herb extracts, we chose a dose to be consistent with the lower dose range more typically used in combination ingredient studies.*


AMLA FRUIT KEY MECHANISMS

Supports vision*
Supports maintenance of lens health and function [12–14]
Supports maintenance of healthy retinal function [15]
Supports retinal and lens antioxidant defenses  [12,15]
Supports retinal mitochondrial function [15]


Supports brain function*
Supports neuroprotective functions [16–22]
Supports cholinergic neurotransmission [19,21]
Supports brain mitochondrial function [23]


Promotes healthy aging and longevity
Supports maintenance of cardiovascular health [4,5,7,8,24,25]
Supports metabolic health [26]
Supports antioxidant defenses [4,5,27]
Promotes healthy cellular stress responses [28]
Supports DNA repair [29]
Supports telomerase activity and telomere length [30]


Supports healthy skin*
Supports healthy skin structure [11]
Supports dermal skin cell (fibroblast) proliferation [31]
Supports dermal extracellular matrix (ECM) structure (collagen, hyaluronic acid) [31–35]
Supports skin antioxidant defenses [32,35,36]
Supports skin defenses against environmental stress [33,35]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]S.S. Yadav, M.K. Singh, P.K. Singh, V. Kumar, Biomed. Pharmacother. 93 (2017) 1292–1302.

[2]B.C. Variya, A.K. Bakrania, S.S. Patel, Pharmacol. Res. 111 (2016) 180–200.

[3]S. Dasaroju, K.M. Gottumukkala, Int J Pharm Sci Rev Res 24 (2014) 150–159.

[4]P. Usharani, P.L. Merugu, C. Nutalapati, BMC Complement. Altern. Med. 19 (2019) 97.

[5]N. Fatima, P. Usharani, Muralidhar, Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy (2013) 275.

[6]S.K. Varnosfaderani, F. Hashem-Dabaghian, G. Amin, M. Bozorgi, G. Heydarirad, E. Nazem, M.N. Toosi, S.H. Mosavat, Journal of Integrative Medicine 16 (2018) 126–131.

[7]H. Upadya, S. Prabhu, A. Prasad, D. Subramanian, S. Gupta, A. Goel, BMC Complement. Altern. Med. 19 (2019) 27.

[8]N. Fatima, U. Pingali, R. Pilli, Pharmacognosy Res. 6 (2014) 29–35.

[9]R. Colucci, F. Dragoni, R. Conti, L. Pisaneschi, L. Lazzeri, S. Moretti, Dermatologic Therapy 28 (2015) 17–21.

[10]D. Shanmugarajan, C. Girish, N. Harivenkatesh, B. Chanaveerappa, N.C. Prasanna Lakshmi, Phytother. Res. 35 (2021) 3275–3285.

[11]T. Uchiyama, M. Tsunenaga, M. Miyanaga, O. Ueda, M. Ogo, Biotechnol. Appl. Biochem. 66 (2019) 870–879.

[12]N. Kavitha Nair, K. Patel, T. Gandhi, Iran J Pharm Res 9 (2010) 147–152.

[13]J. Banot, G. Lata, O.P. Jangir, M. Sharma, V.S. Rathore, S.K. Saini, A. Nagal, Indian J. Exp. Biol. 47 (2009) 157–162.

[14]P. Suryanarayana, P.A. Kumar, M. Saraswat, J.M. Petrash, G.B. Reddy, Mol. Vis. 10 (2004) 148–154.

[15]S. Nashine, R. Kanodia, A.B. Nesburn, G. Soman, B.D. Kuppermann, M.C. Kenney, Aging 11 (2019) 1177–1188.

[16]I. Husain, S. Zameer, T. Madaan, A. Minhaj, W. Ahmad, A. Iqubaal, A. Ali, A.K. Najmi, Metab. Brain Dis. 34 (2019) 957–965.

[17]M. Golechha, J. Bhatia, D.S. Arya, Indian J. Exp. Biol. 48 (2010) 474–478.

[18]M. Golechha, J. Bhatia, S. Ojha, D.S. Arya, Pharm. Biol. 49 (2011) 1128–1136.

[19]M. Golechha, J. Bhatia, D.S. Arya, J. Environ. Biol. 33 (2012) 95–100.

[20]A. Justin Thenmozhi, M. Dhivyabharathi, T.R. William Raja, T. Manivasagam, M.M. Essa, Nutr. Neurosci. 19 (2016) 269–278.

[21]M.S. Uddin, A.A. Mamun, M.S. Hossain, F. Akter, M.A. Iqbal, M. Asaduzzaman, Ann Neurosci 23 (2016) 218–229.

[22]A. Bhattacharya, S. Ghosal, S.K. Bhattacharya, Indian J. Exp. Biol. 38 (2000) 877–880.

[23]V.D. Reddy, P. Padmavathi, G. Kavitha, S. Gopi, N. Varadacharyulu, J. Med. Food 14 (2011) 62–68.

[24]S. Khanna, A. Das, J. Spieldenner, C. Rink, S. Roy, J. Med. Food 18 (2015) 415–420.

[25]F. Hashem-Dabaghian, M. Ziaee, S. Ghaffari, F. Nabati, S. Kianbakht, J Cardiovasc Thorac Res 10 (2018) 118–128.

[26]M.S. Akhtar, A. Ramzan, A. Ali, M. Ahmad, Int. J. Food Sci. Nutr. 62 (2011) 609–616.

[27]T. Yokozawa, H.Y. Kim, H.J. Kim, T. Okubo, D.-C. Chu, L.R. Juneja, Br. J. Nutr. 97 (2007) 1187–1195.

[28]V. Dwivedi, S.C. Lakhotia, J. Biosci. 41 (2016) 697–711.

[29]U. Vishwanatha, K.P. Guruprasad, P.M. Gopinath, R.V. Acharya, B.V. Prasanna, J. Nayak, R. Ganesh, J. Rao, R. Shree, S. Anchan, K.S. Raghu, M.B. Joshi, P. Paladhi, P.M. Varier, K. Muraleedharan, T.S. Muraleedharan, K. Satyamoorthy, J. Ethnopharmacol. 191 (2016) 387–397.

[30]K.P. Guruprasad, S. Dash, M.B. Shivakumar, P.R. Shetty, K.S. Raghu, B.R. Shamprasad, V. Udupi, R.V. Acharya, P.B. Vidya, J. Nayak, A.E. Mana, R. Moni, M.T. Sankaran, K. Satyamoorthy, J. Ayurveda Integr. Med. 8 (2017) 105–112.

[31]T. Fujii, M. Wakaizumi, T. Ikami, M. Saito, J. Ethnopharmacol. 119 (2008) 53–57.

[32]S. Pientaweeratch, V. Panapisal, A. Tansirikongkol, Pharm. Biol. 54 (2016) 1865–1872.

[33]M.D. Adil, P. Kaiser, N.K. Satti, A.M. Zargar, R.A. Vishwakarma, S.A. Tasduq, J. Ethnopharmacol. 132 (2010) 109–114.

[34]P. Chanvorachote, V. Pongrakhananon, S. Luanpitpong, B. Chanvorachote, S. Wannachaiyasit, U. Nimmannit, J. Cosmet. Sci. 60 (2009) 395–403.

[35]M. Majeed, B. Bhat, S. Anand, A. Sivakumar, P. Paliwal, K.G. Geetha, J. Cosmet. Sci. 62 (2011) 49–56.

[36]R.K. Chaudhuri, Skin Pharmacol. Appl. Skin Physiol. 15 (2002) 374–380.

Lion’s Mane

Scientific Name:
Hericium erinaceus

Overview:
Lion’s Mane is a mushroom with neuroprotective and nootropic effects. Lion’s Mane can improve memory and reasoning.

Scientific Name:
Hericium erinaceus

Mechanisms:

  • Increases NGF levels in the brain – enhanced neuronal growth, regeneration and synaptic plasticity[1]
  • Improves myelination – enhanced neuronal communication and nerve regeneration[2]
  • Increases long-term synaptic potentiation – improved memory[3,4]
  • Decreases glutamatergic transmission – decreased neuronal excitability and excitotoxicity[3,4]
  • Protects neurons from endoplasmic reticulum stress[3,4]
  • Anxiolytic[5]
  • Anti-inflammatory effects[6]
REFERENCES

[1] Lai PL, et al (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int J Med Mushrooms, 15(6):539-54. doi: 10.1615/IntJMedMushr.v15.i6.30
[2] Kolotushkina EV, et al (2003). The influence of Hericium erinaceus extract on myelination process in vitro. Fiziol Zh, 49(1):38-45. PMID: 12675022
[3] Phan CW, et al (2015). Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol, 35(3):355-68. doi: 10.3109/07388551.2014.887649
[4] Sabaratnam V, et al (2013). Neuronal health – can culinary and medicinal mushrooms help? J Tradit Complement Med, 3(1):62-8. doi: 10.4103/2225-4110.106549
[5] Nagano M, et al (2010). Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed Res, 31(4):231-7. doi: 10.2220/biomedres.31.231
[6] Geng Y, et al (2014). Anti-inflammatory activity of mycelial extracts from medicinal mushrooms. Int J Med Mushrooms, 16(4):319-25. doi: 
10.1615/IntJMedMushrooms.v16.i4.20

Schisandra chinensis Fruit Extract

COMMON NAME

Schisandra | Schizandra | Magnolia Berry | Five-Flavor-Fruit | Limonnik (Russian)


TOP BENEFITS OF SCHISANDRA CHINENSIS

Supports cognitive function*
Supports mood*
Supports resistance to stress*
Supports endurance capacity*
Supports sleep*


WHAT IS SCHISANDRA CHINENSIS?

The fruits of Schisandra chinensis are berries. They are one of the 50 fundamental herbs in Traditional Chinese Medicine, and have been used in traditional medicine in Japan, Korea, and Far East regions of the Russian empire. One of its common names—Five-Flavor-Fruit—is because the berries are known for possessing all five basic flavors: salty, sweet, sour, pungent (spicy), and bitter. S. chinensis fruits are considered to be an adaptogen, supporting broad resistance to stress, mental and physical performance, mood, sleep, vision, and immunity. Several of its traditional uses, including use as a tonic to counter exhaustion and support night vision, led to Russian scientists extensively studying the berries and seeds in both animals and humans from 1940-1960. As a result of this research S. chinensis gained recognition as an adaptogen in the early 1960’s in the former USSR, and has continued to be extensively studied in articles published in Russian, and more recently in English language journals. The primary active compounds in S. chinensis berries are schisandra lignans—lignans are a subgroup of non-flavonoid polyphenols that interact with gut microbiota (i.e., gut-brain axis) [1].*


NEUROHACKER’S SCHISANDRA CHINENSIS SOURCING

Schisandra chinensis fruit extract is standardized to contain not less than 9% schisandrins.

Schisandra chinensis fruit extract is Non-GMO and Vegan.


SCHISANDRA CHINENSIS DOSING PRINCIPLES AND RATIONALE

The original Russian research resulted in Schisandra chinensis being categorized as an herbal adaptogen. Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response (see Neurohacker Dosing Principles). It’s important to be in this zone; it’s just as important not to be above it. The Russian research also found that the amount of the schisandra lignans given was critical when determining the dose, with very low doses of these compounds being nootropic and ergogenic. So, when an extract is standardized for higher amounts of schisandrins, lower amounts of it should be taken. Our dosing of S. chinensis is determined based on the standardization in order to provide an amount of schisandra lignans in the target range for a healthy adaptive response.*


SCHISANDRA CHINENSIS KEY MECHANISMS

Adaptogenic actions*

Supports endurance and working capacity [1]

Supports resistance to stress [1–8]

Supports sleep [1]

Supports a calm mood [1,9]

Supports healthy behavioral responses to stress [3,4,7]


Supports brain function*

Supports mental performance [1]

Supports vision [1]

Supports learning and memory [7,10–13]

Supports GABAergic neurotransmission [3,14,15]

Supports GABA-Glutamate levels [10,11,15,16]

Supports acetylcholine signaling [10,11,13]

Supports serotonin signaling [9–11,16]

Supports adrenergic signaling [9–11,16]

Supports dopamine signaling [9–11,16]

Supports sleep mechanisms [14,15,17,18] 

Influences acetylcholinesterase (AChE) activity [10,13]

Supports brain-derived neurotrophic factor (BDNF) [4,7]

Influences glycogen synthase kinase 3β (GSK3β) activity [7,10] 

Supports neuroprotective functions [10–13,19,20]

Supports brain mitochondrial function [21]

Supports antioxidant defenses [10,19,21,22]

Supports phase II detoxifying/antioxidant enzymes [22]


Supports a healthy gut microbiota*

Supports the composition of the gut microbiota [23,24]

Supports gut microbial metabolism [24]

Supports gut immune responses [24]


Supports healthy immune function*

Supports innate immunity [25–27]

Supports immune function during some forms of stress [2,28–30]

Supports immunomodulation (i.e., balance of immune function) [31–33]


Promotes healthy aging and longevity*

Supports mitochondrial function [19,21,34]

Supports antioxidant defenses [21,34]

Supports HSP70 chaperone [34]

Supports autophagy [35]

Supports healthy muscle and bone with aging [36,37]


Complementary ingredients*

Sesamin (from sesame seeds)—another lignan—to support liver health [38] and blood fluidity [39]

Other adaptogens (e.g., Rhodiola, Siberian Ginseng) as a nootropic and immune support [40,41]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES 

[1]A. Panossian, G. Wikman, J. Ethnopharmacol. 118 (2008) 183–212.

[2]J. Li, J. Wang, J.-Q. Shao, H. Du, Y.-T. Wang, L. Peng, Chin. J. Integr. Med. 21 (2015) 43–48.

[3]T. Yan, M. Xu, B. Wu, Z. Liao, Z. Liu, X. Zhao, K. Bi, Y. Jia, Food Funct. 7 (2016) 2811–2819.

[4]T. Yan, M. Xu, S. Wan, M. Wang, B. Wu, F. Xiao, K. Bi, Y. Jia, Psychiatry Res. 243 (2016) 135–142.

[5]Sun L.-J., Wang G.-H., Wu B., Wang J., Wang Q., Hu L.-P., Shao J.-Q., Wang Y.-T., Li J., Gu P., Lu B., Zhonghua Nan Ke Xue 15 (2009) 126–129.

[6]N. Xia, J. Li, H. Wang, J. Wang, Y. Wang, Exp. Ther. Med. 11 (2016) 353–359.

[7]T. Yan, B. He, S. Wan, M. Xu, H. Yang, F. Xiao, K. Bi, Y. Jia, Sci. Rep. 7 (2017) 6903.

[8]Xia P., Sun L.-J., Wang J., Zhonghua Nan Ke Xue 17 (2011) 472–476.

[9]W.-W. Chen, R.-R. He, Y.-F. Li, S.-B. Li, B. Tsoi, H. Kurihara, Phytomedicine 18 (2011) 1144–1147.

[10]Y. Liu, Z. Liu, M. Wei, M. Hu, K. Yue, R. Bi, S. Zhai, Z. Pi, F. Song, Z. Liu, Food Funct. 10 (2019) 432–447.

[11]B.-B. Wei, M.-Y. Liu, Z.-X. Chen, M.-J. Wei, Acta Pharmacol. Sin. 39 (2018) 616–625.

[12]N. Egashira, K. Kurauchi, K. Iwasaki, K. Mishima, K. Orito, R. Oishi, M. Fujiwara, Phytother. Res. 22 (2008) 49–52.

[13]V.V. Giridharan, R.A. Thandavarayan, S. Sato, K.M. Ko, T. Konishi, Free Radic. Res. 45 (2011) 950–958.

[14]C. Zhang, X. Mao, X. Zhao, Z. Liu, B. Liu, H. Li, K. Bi, Y. Jia, Fitoterapia 96 (2014) 123–130.

[15]N. Li, J. Liu, M. Wang, Z. Yu, K. Zhu, J. Gao, C. Wang, J. Sun, J. Chen, H. Li, Biomed. Pharmacother. 103 (2018) 509–516.

[16]B. Wei, Q. Li, R. Fan, D. Su, X. Chen, Y. Jia, K. Bi, J. Pharm. Biomed. Anal. 88 (2014) 416–422.

[17]H. Zhu, L. Zhang, G. Wang, Z. He, Y. Zhao, Y. Xu, Y. Gao, L. Zhang, J. Food Drug Anal. 24 (2016) 831–838.

[18]F. Huang, Y. Xiong, L. Xu, S. Ma, C. Dou, J. Ethnopharmacol. 110 (2007) 471–475.

[19]N. Chen, P.Y. Chiu, K.M. Ko, Biol. Pharm. Bull. 31 (2008) 1387–1391.

[20]C.-L. Li, Y.-H. Tsuang, T.-H. Tsai, Nutrients 11 (2019).

[21]K.M. Ko, N. Chen, H.Y. Leung, E.P.K. Leong, M.K.T. Poon, P.Y. Chiu, Biofactors 34 (2008) 331–342.

[22]S.Y. Park, S.J. Park, T.G. Park, S. Rajasekar, S.-J. Lee, Y.-W. Choi, Int. Immunopharmacol. 17 (2013) 415–426.

[23]M.-Y. Song, J.-H. Wang, T. Eom, H. Kim, Nutr. Res. 35 (2015) 655–663.

[24]Y. Qi, L. Chen, K. Gao, Z. Shao, X. Huo, M. Hua, S. Liu, Y. Sun, S. Li, Int. J. Biol. Macromol. 124 (2019) 627–634.

[25]M. Kortesoja, E. Karhu, E.S. Olafsdottir, J. Freysdottir, L. Hanski, Free Radic. Biol. Med. 131 (2019) 309–317.

[26]T. Zhao, Y. Feng, J. Li, R. Mao, Y. Zou, W. Feng, D. Zheng, W. Wang, Y. Chen, L. Yang, X. Wu, Int. J. Biol. Macromol. 65 (2014) 33–40.

[27]T. Zhao, G. Mao, R. Mao, Y. Zou, D. Zheng, W. Feng, Y. Ren, W. Wang, W. Zheng, J. Song, Y. Chen, L. Yang, X. Wu, Food Chem. Toxicol. 55 (2013) 609–616.

[28]L.-M. Zhao, Y.-L. Jia, M. Ma, Y.-Q. Duan, L.-H. Liu, Int. J. Biol. Macromol. 76 (2015) 63–69.

[29]J. Yu, L. Cong, C. Wang, H. Li, C. Zhang, X. Guan, P. Liu, Y. Xie, J. Chen, J. Sun, Exp. Ther. Med. 15 (2018) 4755–4762.

[30]S.-H. Tang, R.-R. He, T. Huang, C.-Z. Wang, Y.-F. Cao, Y. Zhang, H. Kurihara, J. Ethnopharmacol. 134 (2011) 141–146.

[31]Y.H. Kang, H.M. Shin, Immunopharmacol. Immunotoxicol. 34 (2012) 292–298.

[32]H. Kim, Y.-T. Ahn, Y.S. Kim, S.I. Cho, W.G. An, Pharmacogn. Mag. 10 (2014) S80–5.

[33]A.Y.S. Yip, W.T.Y. Loo, L.W.C. Chow, Biomed. Pharmacother. 61 (2007) 588–590.

[34]P.Y. Chiu, H.Y. Leung, M.K.T. Poon, K.M. Ko, Biogerontology 7 (2006) 199–210.

[35]Y. Lu, W.-J. Wang, Y.-Z. Song, Z.-Q. Liang, Pharm. Biol. 52 (2014) 1302–1307.

[36]K.-Y. Kim, S.-K. Ku, K.-W. Lee, C.-H. Song, W.G. An, J. Ethnopharmacol. 212 (2018) 175–187.

[37]J.-S. Kim, J.S. Takanche, J.-E. Kim, S.-H. Jeong, S.-H. Han, H.-K. Yi, Phytother. Res. 33 (2019) 1865–1877.

[38]H.-F. Chiu, T.-Y. Chen, Y.-T. Tzeng, C.-K. Wang, Phytother. Res. 27 (2013) 368–373.

[39]D. Tsi, A. Tan, Bioinformation 2 (2008) 249–252.

[40]G. Aslanyan, E. Amroyan, E. Gabrielyan, M. Nylander, G. Wikman, A. Panossian, Phytomedicine 17 (2010) 494–499.

[41]N. Kormosh, K. Laktionov, M. Antoshechkina, Phytother. Res. 20 (2006) 424–425.

KSM-66 Ashwagandha®​ (​Withania somnifera​) Root Extract

COMMON NAME

Ashwagandha | Indian ginseng


TOP BENEFITS OF KSM-66 ASHWAGANDHA®

Supports sleep*
Supports stress relief*
Supports memory and cognition*
Supports muscle strength and endurance*
Supports sexual health*
Supports a healthy body weight*
Supports thyroid health*


WHAT IS KSM-66 ASHWAGANDHA® 

KSM-66 Ashwagandha® is a full-spectrum ashwagandha root extract. Ashwagandha (i.e., Indian ginseng) is a Rasayana—the category of elixirs and tonic herbs prized by the branch of Ayurvedic medicine concerned with rejuvenation and focused on promoting a youthful state of physical and mental health. Ashwagandha holds a prominent place among the Rasayana herbs, where it was used for many reasons including as general tonic and to infuse energy and vigor in circumstances characterized by exhaustion or a lack of physical energy. A key attribute is that ashwagandha promotes balance. As the English name Indian ginseng implies, ashwagandha was believed to share some of the attributes of ginseng, in essence supporting multiple areas of health and well-being, especially under conditions characterized by increased stress. Herbs that produce these types of nonspecific resistance to and recovery from stress—and which typically also support general well-being, healthy energy, and homeostasis—are called adaptogens. Among its studied benefits, ashwagandha supports sleep quality, relaxation, muscle recovery, cognitive function, immunity and a healthier stress response.*


NEUROHACKER’S KSM-66 ASHWAGANDHA® SOURCING

KSM-66 Ashwagandha® was the product of 14 years of R&D. It is the most researched brand of ashwagandha, with a research focus on what happens in healthy people when they take the ingredient.

Created by Ixoreal Biomed Inc., the world's ashwagandha experts. Ixoreal owns the entire production chain from farm to the finished ingredient, allowing them to deliver high-quality ashwagandha with batch-to-batch consistency.

KSM-66 Ashwagandha® is a “full-spectrum” root extract, which means it is designed to maintain the balance of the various constituents found in the root. It is standardized for ≥5% withanolides and <0.1% withaferin A.

KSM-66 Ashwagandha® has won awards as an innovative ingredient and for sports nutrition. It has also qualified for an extensive number of certifications including Organic, Non-GMO, GRAS, Vegan and Gluten-Free.

KSM-66 Ashwagandha® is a registered trademark of Ixoreal Biomed Inc.


KSM-66 ASHWAGANDHA®  DOSING PRINCIPLES AND RATIONALE

We consider Withania somnifera (i.e., ashwagandha) to be an herbal adaptogen, so expect it to follow hormetic dosing principles. Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone; it’s just as important not to be above it. Based on studies where different doses have been given in the same study, we also consider ashwagandha dosing to be somewhat akin to the Pareto Principle (i.e., 80-20 rule), because much of the benefits have occurred at a lower dose, and relatively modest additional gains are achieved at doses two- to four-fold higher (see Neurohacker Dosing Principles). Because of both of these reasons, it’s important to identify the lowest dose that can produce many of the desired responses when using ashwagandha. Since we also use ashwagandha in more than one product, it’s also important to us to ensure that a user taking several of our products will not inadvertently take too much ashwagandha. The most common dose of KSM-66 Ashwagandha® in human studies has been 300 mg taken twice a day (i.e., 600 mg a day total). We consider this to be the upper end of the total amount of daily ashwagandha that we’d want a customer to take over a long period of time, and 300 mg to be the maximum at a given time of day (i.e., if being taken at dinner as an example). We consider the lower end of the beneficial range to be about 125-150 mg depending on the ashwagandha extract being used.*


WITHANIA SOMNIFERA KEY MECHANISMS

Promotes healthy sleep*

Supports sleep onset [1,2]

Supports sleep efficiency [1]

Supports quality of sleep [1,3]

Supports slow wave sleep [2]

Supports total sleep time [2]


Supports a healthy mood and stress response*

Supports a calm mood [1,4]

Supports stress management [5–7]

Supports healthy cortisol levels [5–7]


Supports brain function*

Supports cognitive and psychomotor performance [8,9]

Supports memory, executive function, attention, and information processing speed [10]

Supports GABAergic neurotransmission [2,11]

Supports GABA receptor signaling [12–14]

Supports dopamine levels [15]

Influences the basal activity levels of acetylcholine esterase [15]

Supports neuroprotective functions – [15–17]


Supports healthy immune system function*

Supports innate immunity [18–22]

Supports adaptive immunity [18,19,22–31]

Supports immune system communication [22,32–34]

Supports healthy immune signaling [4,35,36]


Supports mitochondrial structure and function*

Supports mitochondrial membrane potential and structural integrity [16]

Protects from mitochondrial damage [16]

Protects from mitochondrial membrane permeabilization [37]

Protects from complex I-V Inhibition (protects electron transport chain and oxidative phosphorylation performance) [15–17,38]

Supports citric acid cycle enzymes [38]


Promotes exercise performance*

Supports endurance performance [39,40]

Supports muscle strength [41,42]

Supports post-exercise recovery [42]


Supports healthy metabolism*

Supports healthy insulin sensitivity [4,35,36,43,44]

Supports healthy blood glucose levels [35,36,43–45]

Supports healthy leptin signaling [4,44]

Supports healthy body weight [4,44]

Supports healthy feeding behaviors [4,5]

Supports lean mass [42]


Enhances antioxidant defenses*

Supports antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [15–17,45,46]

Replenishes glutathione (GSH) levels [15,16,45]

Counters oxidative stress and reactive oxygen species levels [15,16,37,47]


Supports healthy thyroid function*

Supports thyroid function [48–50]


Promotes healthy aging and longevity*

Supports lifespan extension (Caenorhabditis elegans) [47,51]

Supports insulin-like growth factor-1 (IGF-1) signaling pathway [47,51]

Influences α-synuclein and amyloid-β aggregation [47]

Supports FOXO3A and SIRT3 [52]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]D. Langade, S. Kanchi, J. Salve, K. Debnath, D. Ambegaokar, Cureus 11 (2019) e5797.

[2]A. Kumar, H. Kalonia, Indian J. Pharm. Sci. 70 (2008) 806–810.

[3]A.A. Raut, N.N. Rege, F.M. Tadvi, P.V. Solanki, K.R. Kene, S.G. Shirolkar, S.N. Pandey, R.A. Vaidya, A.B. Vaidya, J. Ayurveda Integr. Med. 3 (2012) 111–114.

[4]T. Kaur, G. Kaur, J. Neuroinflammation 14 (2017) 201.

[5]D. Choudhary, S. Bhattacharyya, K. Joshi, J. Evid. Based Complementary Altern. Med. 22 (2017) 96–106.

[6]K. Chandrasekhar, J. Kapoor, S. Anishetty, Indian J. Psychol. Med. 34 (2012) 255–262.

[7]B. Auddy, J. Hazra, A. Mitra, B. Abedon, S. Ghosal, Journal of American Nutraceutical Association 11 (2008) 50–56.

[8]U. Pingali, R. Pilli, N. Fatima, Pharmacognosy Res. 6 (2014) 12–18.

[9]K.N.R. Chengappa, C.R. Bowie, P.J. Schlicht, D. Fleet, J.S. Brar, R. Jindal, J. Clin. Psychiatry 74 (2013) 1076–1083.

[10]D. Choudhary, S. Bhattacharyya, S. Bose, J. Diet. Suppl. 14 (2017) 599–612.

[11]M. Candelario, E. Cuellar, J.M. Reyes-Ruiz, N. Darabedian, Z. Feimeng, R. Miledi, A. Russo-Neustadt, A. Limon, J. Ethnopharmacol. 171 (2015) 264–272.

[12]A.K. Mehta, P. Binkley, S.S. Gandhi, M.K. Ticku, Indian J. Med. Res. 94 (1991) 312–315.

[13]J.P. Bhattarai, S.A. Park, S.K. Han, Phytotherapy Research (2009).

[14]H. Yin, D.H. Cho, S.J. Park, S.K. Han, The American Journal of Chinese Medicine 41 (2013) 1043–1051.

[15]M.J. Manjunath, Muralidhara, J. Food Sci. Technol. 52 (2015) 1971–1981.

[16]A. Sood, A. Mehrotra, D.K. Dhawan, R. Sandhir, Metab. Brain Dis. 33 (2018) 1261–1274.

[17]P. Kumar, A. Kumar, J. Med. Food 12 (2009) 591–600.

[18]L. Davis, G. Kuttan, J. Exp. Clin. Cancer Res. 21 (2002) 585–590.

[19]J. Mikolai, A. Erlandsen, A. Murison, K.A. Brown, W.L. Gregory, P. Raman-Caplan, H.L. Zwickey, J. Altern. Complement. Med. 15 (2009) 423–430.

[20]J. Bhat, A. Damle, P.P. Vaishnav, R. Albers, M. Joshi, G. Banerjee, Phytother. Res. 24 (2010) 129–135.

[21]A. Barua, M.J. Bradaric, P. Bitterman, J.S. Abramowicz, S. Sharma, S. Basu, H. Lopez, J.M. Bahr, Am. J. Reprod. Immunol. 70 (2013) 538–550.

[22]F. Malik, A. Kumar, S. Bhushan, D.M. Mondhe, H.C. Pal, R. Sharma, A. Khajuria, S. Singh, G. Singh, A.K. Saxena, K.A. Suri, G.N. Qazi, J. Singh, Eur. J. Cancer 45 (2009) 1494–1509.

[23]L. Davis, G. Kuttan, J. Ethnopharmacol. 71 (2000) 193–200.

[24]M. Gautam, S.S. Diwanay, S. Gairola, Y.S. Shinde, S.S. Jadhav, B.K. Patwardhan, Int. Immunopharmacol. 4 (2004) 841–849.

[25]S. Bani, M. Gautam, F.A. Sheikh, B. Khan, N.K. Satti, K.A. Suri, G.N. Qazi, B. Patwardhan, J. Ethnopharmacol. 107 (2006) 107–115.

[26]F. Malik, J. Singh, A. Khajuria, K.A. Suri, N.K. Satti, S. Singh, M.K. Kaul, A. Kumar, A. Bhatia, G.N. Qazi, Life Sci. 80 (2007) 1525–1538.

[27]G. Muralikrishnan, A.K. Dinda, F. Shakeel, Immunol. Invest. 39 (2010) 688–698.

[28]K. Yamada, P. Hung, T.K. Park, P.J. Park, B.O. Lim, J. Ethnopharmacol. 137 (2011) 231–235.

[29]S.K. Latheef, K. Dhama, H.A. Samad, M.Y. Wani, M.A. Kumar, M. Palanivelu, Y.S. Malik, S.D. Singh, R. Singh, Virusdisease 28 (2017) 115–120.

[30]S.P. Maurya, B.K. Das, R. Singh, S. Tyagi, Clin. Immunol. 203 (2019) 122–124.

[31]R. Kumar, J. Rai, N.C. Kajal, P. Devi, Indian J. Tuberc. 65 (2018) 246–251.

[32]B. Khan, S.F. Ahmad, S. Bani, A. Kaul, K.A. Suri, N.K. Satti, M. Athar, G.N. Qazi, Int. Immunopharmacol. 6 (2006) 1394–1403.

[33]C.D.P. Tripathi, P.K. Kushawaha, R.S. Sangwan, C. Mandal, S. Misra-Bhattacharya, A. Dube, Phytomedicine 24 (2017) 87–95.

[34]T. Kaur, H. Singh, R. Mishra, S. Manchanda, M. Gupta, V. Saini, A. Sharma, G. Kaur, Mol. Cell. Biochem. 427 (2017) 91–101.

[35]M.R. Shahraki, Z. Samadi Noshahr, H. Ahmadvand, A. Nakhaie, J. Basic Clin. Physiol. Pharmacol. 27 (2016) 387–391.

[36]Z. Samadi Noshahr, M.R. Shahraki, H. Ahmadvand, D. Nourabadi, A. Nakhaei, Rep Biochem Mol Biol 3 (2015) 62–67.

[37]P. Parihar, R. Shetty, P. Ghafourifar, M.S. Parihar, Cell. Mol. Biol. 62 (2016) 73–83.

[38]P. Senthilnathan, R. Padmavathi, V. Magesh, D. Sakthisekaran, Life Sci. 78 (2006) 1010–1014.

[39]J.S. Sandhu, B. Shah, S. Shenoy, S. Chauhan, G.S. Lavekar, M.M. Padhi, Int. J. Ayurveda Res. 1 (2010) 144–149.

[40]B. Choudhary, A. Shetty, D.G. Langade, Ayu 36 (2015) 63–68.

[41]A.A. Raut, N.N. Rege, F.M. Tadvi, P.V. Solanki, K.R. Kene, S.G. Shirolkar, S.N. Pandey, R.A. Vaidya, A.B. Vaidya, J. Ayurveda Integr. Med. 3 (2012) 111–114.

[42]S. Wankhede, D. Langade, K. Joshi, S.R. Sinha, S. Bhattacharyya, J. Int. Soc. Sports Nutr. 12 (2015) 43.

[43]T. Anwer, M. Sharma, K.K. Pillai, M. Iqbal, Basic Clin. Pharmacol. Toxicol. 102 (2008) 498–503.

[44]J. Lee, J. Liu, X. Feng, M.A. Salazar Hernández, P. Mucka, D. Ibi, J.W. Choi, U. Ozcan, Nat. Med. 22 (2016) 1023–1032.

[45]T. Anwer, M. Sharma, K.K. Pillai, G. Khan, Acta Pol. Pharm. 69 (2012) 1095–1101.

[46]S.K. Gupta, A. Dua, B.P.S. Vohra, Drug Metabol. Drug Interact. 19 (2003) 211–222.

[47]B.A. Akhoon, S. Pandey, S. Tiwari, R. Pandey, Exp. Gerontol. 78 (2016) 47–56.

[48]A.K. Sharma, I. Basu, S. Singh, J. Altern. Complement. Med. 24 (2018) 243–248.

[49]J.M. Gannon, P.E. Forrest, K.N. Roy Chengappa, J. Ayurveda Integr. Med. 5 (2014) 241–245.

[50]R. Jatwa, A. Kar, Phytother. Res. 23 (2009) 1140–1145.

[51]B.A. Akhoon, L. Rathor, R. Pandey, Exp. Gerontol. 104 (2018) 113–117.

[52]R. Pradhan, R. Kumar, S. Shekhar, N. Rai, A. Ambashtha, J. Banerjee, M. Pathak, S.N. Dwivedi, S. Dey, A.B. Dey, Exp. Gerontol. 95 (2017) 9–15.


American Ginseng (Cereboost™)

COMMON NAME

American Ginseng


TOP BENEFITS OF CEREBOOST™

Enhances working memory and alertness*

Promotes calmness*

Supports cognitive function and performance*


WHAT IS CEREBOOST™?

Panax quinquefolius is commonly called American ginseng, because it is native to forested regions in North America. It is the same genus as Asian ginseng (Panax ginseng) and prized for many of the same reasons. Both American and Asian ginseng contain similar active constituents called ginsenosides. The ginsenosides are thought to be responsible for many of the adaptogenic (i.e., stress and fatigue support)  and health-promoting properties associated with ginseng.[1] While there are many different ginsenosides, the most well characterized include Rb1, Rb2, Rg1, Rc, Rd, and Re. Cereboost™ is a clinically studied and standardized American ginseng root extract. In humans studies, Cereboost™ has enhanced working memory and alertness, while promoting calmness.*


NEUROHACKER’S CEREBOOST™ SOURCING

Cereboost™ has been used in human clinical studies, where it has enhanced alertness, working memory, and calmness.

Cereboost™ was granted the NutrAward 2010 for the Best New Ingredient of the year.

Cereboost™ is produced by Naturex, an innovator in nutraceutical products in Europe and the United States.

Cereboost™ is standardized for total ginsenoside content (10-12%), and several specific ginsenosides, including Rb1 (4-7%), Rb2 (0.2-1.5%), Rg1 (0.1-0.4%), Rc (0.5-3.5%), Rd (0.9-3.0%), and Re (0.4-3.5%). 

Cereboost™ is non-GMO, gluten-free, and vegan.

Cereboost™ is a trademark of Naturex.


CEREBOOST™ DOSING PRINCIPLES AND RATIONALE

We consider Panax quinquefolius to be in the adaptogenic herb category; following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is consistent with the studied amount in the human clinical studies for supporting working memory, alertness, and calmness.*


PANAX QUINQUEFOLIUS KEY MECHANISMS

Supports brain function and cognition*

Supports attention [2]

Supports working memory [2,3]

Supports learning and memory [4–7]

Modulates cholinergic neurotransmission [1,4,5,8,9]

Influences acetylcholinesterase (AChE) activity [4]

Supports choline acetyltransferase (ChAT) expression [4]

Supports acetylcholine levels [4]

Influences dopaminergic neurotransmission [10–13]

Influences GABAergic neurotransmission [1,14]

Supports neuroprotective functions [1,4,5,8,14,15]

Supports healthy neural cytokine signaling [1,8,14,16]

Supports neurite outgrowth, dendritic spine density, and synaptic plasticity [1,5–7]

Supports BDNF signaling [1,7,8,17]

Supports neurogenesis [1,8,17]


Supports a healthy mood*

Promotes calmness [2]

Supports mood [1,14,18]

Supports adaptogenic actions (i.e., stress resilience and anti-fatigue) [5]

Supports healthy stress signaling and HPA-axis activation [1,14] 

 

Supports antioxidant defenses*

Supports brain antioxidant defenses [14]

Replenishes glutathione (GSH) levels [14]

Counters lipid peroxidation [14]

 

Supports healthy cardiometabolic function*

Supports healthy cardiometabolic parameters [19–21]

Supports healthy blood glucose levels [22–24]

Supports healthy insulin sensitivity [25]

Supports fat metabolism [19]

Supports mitochondrial enzyme complex activities [14]

 

Supports a healthy gut microbiota*

Supports healthy gut immune signaling [26–28]

Supports a healthy gut microbiota composition [27,28]

 

Promotes exercise performance* 

Supports high-intensity endurance performance [29,30]

Supports healthy muscle responses to exercise [29–31]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES 

[1]H.J. Kim, P. Kim, C.Y. Shin, J. Ginseng Res. 37 (2013) 8–29.

[2]A. Scholey, A. Ossoukhova, L. Owen, A. Ibarra, A. Pipingas, K. He, M. Roller, C. Stough, Psychopharmacology 212 (2010) 345–356.

[3]A. Ossoukhova, L. Owen, K. Savage, M. Meyer, A. Ibarra, M. Roller, A. Pipingas, K. Wesnes, A. Scholey, Hum. Psychopharmacol. 30 (2015) 108–122.

[4]K. Shin, H. Guo, Y. Cha, Y.-H. Ban, D.W. Seo, Y. Choi, T.-S. Kim, S.-P. Lee, J.-C. Kim, E.-K. Choi, J.-M. Yon, Y.-B. Kim, Regul. Toxicol. Pharmacol. 78 (2016) 53–58.

[5]Y. Cheng, L.-H. Shen, J.-T. Zhang, Acta Pharmacol. Sin. 26 (2005) 143–149.

[6]I. Mook-Jung, H.S. Hong, J.H. Boo, K.H. Lee, S.H. Yun, M.Y. Cheong, I. Joo, K. Huh, M.W. Jung, J. Neurosci. Res. 63 (2001) 509–515.

[7]H. Zhao, Q. Li, X. Pei, Z. Zhang, R. Yang, J. Wang, Y. Li, Behav. Brain Res. 201 (2009) 311–317.

[8]K. Radad, R. Moldzio, W.-D. Rausch, CNS Neurosci. Ther. 17 (2011) 761–768.

[9]C.G. Benishin, Neurochem. Int. 21 (1992) 1–5.

[10]G.-L. Wang, Y.-P. Wang, J.-Y. Zheng, L.-X. Zhang, Brain Res. 1699 (2018) 44–53.

[11]S.H. Lee, J. Hur, E.H. Lee, S.Y. Kim, Biomol. Ther. 20 (2012) 482–486.

[12]H.S. Kim, Y.T. Hong, K.W. Oh, Y.H. Seong, H.M. Rheu, D.H. Cho, S. Oh, W.K. Park, C.G. Jang, Gen. Pharmacol. 30 (1998) 783–789.

[13]H.S. Kim, K.S. Kim, K.W. Oh, Pharmacol. Biochem. Behav. 63 (1999) 407–412.

[14]P. Chanana, A. Kumar, Front. Neurosci. 10 (2016) 84.

[15]Y.C. Kim, S.R. Kim, G.J. Markelonis, T.H. Oh, J. Neurosci. Res. 53 (1998) 426–432.

[16]C.F. Wu, X.L. Bi, J.Y. Yang, J.Y. Zhan, Y.X. Dong, J.H. Wang, J.M. Wang, R. Zhang, X. Li, Int. Immunopharmacol. 7 (2007) 313–320.

[17]L.-H. Shen, J.-T. Zhang, Neurol. Res. 26 (2004) 422–428.

[18]M. Chatterjee, P. Verma, G. Palit, Indian J. Exp. Biol. 48 (2010) 306–313.

[19]R.K. Singh, E. Lui, D. Wright, A. Taylor, M. Bakovic, Can. J. Physiol. Pharmacol. 95 (2017) 1046–1057.

[20]V. Vuksan, Z.Z. Xu, E. Jovanovski, A.L. Jenkins, U. Beljan-Zdravkovic, J.L. Sievenpiper, P. Mark Stavro, A. Zurbau, L. Duvnjak, M.Z.C. Li, Eur. J. Nutr. (2018).

[21]I. Mucalo, E. Jovanovski, D. Rahelić, V. Božikov, Z. Romić, V. Vuksan, J. Ethnopharmacol. 150 (2013) 148–153.

[22]V. Vuksan, M.P. Stavro, J.L. Sievenpiper, V.Y. Koo, E. Wong, U. Beljan-Zdravkovic, T. Francis, A.L. Jenkins, L.A. Leiter, R.G. Josse, Z. Xu, J. Am. Coll. Nutr. 19 (2000) 738–744.

[23]V. Vuksan, J.L. Sievenpiper, V.Y. Koo, T. Francis, U. Beljan-Zdravkovic, Z. Xu, E. Vidgen, Arch. Intern. Med. 160 (2000) 1009–1013.

[24]V. Vuksan, J.L. Sievenpiper, J. Wong, Z. Xu, U. Beljan-Zdravkovic, J.T. Arnason, V. Assinewe, M.P. Stavro, A.L. Jenkins, L.A. Leiter, T. Francis, Am. J. Clin. Nutr. 73 (2001) 753–758.

[25]L.R. De Souza, A.L. Jenkins, E. Jovanovski, D. Rahelić, V. Vuksan, J. Ethnopharmacol. 159 (2015) 55–61.

[26]C.-Z. Wang, H. Yao, C.-F. Zhang, L. Chen, J.-Y. Wan, W.-H. Huang, J. Zeng, Q.-H. Zhang, Z. Liu, J. Yuan, Y. Bi, C. Sava-Segal, W. Du, M. Xu, C.-S. Yuan, Int. Immunopharmacol. 64 (2018) 246–251.

[27]C.-Z. Wang, C. Yu, X.-D. Wen, L. Chen, C.-F. Zhang, T. Calway, Y. Qiu, Y. Wang, Z. Zhang, S. Anderson, Y. Wang, W. Jia, C.-S. Yuan, Cancer Prev. Res. 9 (2016) 803–811.

[28]C.-Z. Wang, W.-H. Huang, C.-F. Zhang, J.-Y. Wan, Y. Wang, C. Yu, S. Williams, T.-C. He, W. Du, M.W. Musch, E.B. Chang, C.-S. Yuan, Clin. Transl. Oncol. 20 (2018) 302–312.

[29]J. Wu, S. Saovieng, I.-S. Cheng, T. Liu, S. Hong, C.-Y. Lin, I.-C. Su, C.-Y. Huang, C.-H. Kuo, J. Ginseng Res. (2018).

[30]C.-W. Hou, S.-D. Lee, C.-L. Kao, I.-S. Cheng, Y.-N. Lin, S.-J. Chuang, C.-Y. Chen, J.L. Ivy, C.-Y. Huang, C.-H. Kuo, PLoS One 10 (2015) e0116387.

[31]M. Estaki, E.G. Noble, Appl. Physiol. Nutr. Metab. 40 (2015) 116–121.


LJ100® Eurycoma longifolia Root Extract

COMMON NAME

Tongkat Ali | Malaysian Ginseng | Longjack


TOP BENEFITS OF LJ100® EURYCOMA LONGIFOLIA ROOT EXTRACT

Supports general immune health*

Supports mood and stress* 

Supports men’s health*

Supports muscle performance*


WHAT IS LJ100® EURYCOMA LONGIFOLIA ROOT EXTRACT?

Eurycoma longifolia grows in rainforests throughout Southeast Asia. Its common name is Tongkat Ali (translates as Ali’s walking stick), which refers to its use as a tonic for male virility. It’s sometimes called “Malaysian ginseng,” because similar to ginseng, it’s regarded as an adaptogen that supports resistance to and recovery from stress of all types. The roots are used for many purposes that fit within the adaptogen category including supporting mood, overcoming fatigue, enhancing exercise, and promoting vigor with aging. E. longifolia can also be considered as an immune adaptogen, enhancing overall immunological vigor of the adaptive immune system. E. longifolia contains several bioactive compounds including quassinoids (e.g., eurycolactone, eurycomalactone, eurycomanol, eurycomanone, and eurycomaoside), alkaloids, flavonoids, triterpenes, and glycoproteins [1,2].* 


NEUROHACKER’S LJ100® EURYCOMA LONGIFOLIA ROOT EXTRACT SOURCING

LJ100® is backed by strong science; it is the most extensively studied Eurycoma longifolia root extract and has been used in a dozen human clinical studies. 

LJ100® is produced using a patented extraction technology to create an extract standardized to 40% glyco saponins, >22% eurypeptide, and  0.8-2% eurycomanone.

LJ100® is made from wild-crafted Tongkat Ali root from the rainforests of Malaysia utilizing sustainable harvesting and fair-trade practices. 

LJ100® is GRAS, Kosher & Halal certified, non-allergenic, non-GMO, gluten-free and organic compliant.

LJ100® is the registered trademark of HP Ingredients Corp. LJ100® is the result of an innovative collaboration between MIT and the Government of Malaysia.


LJ100® EURYCOMA LONGIFOLIA ROOT EXTRACT DOSING PRINCIPLES AND RATIONALE

Because Eurycoma longifolia is an adaptogen, we consider dosing to follow hormetic principles (see Neurohacker Dosing Principles). Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone. In human studies, LJ100®, a standardized Eurycoma longifolia root extract, has been given in doses ranging from 50 to 400 mg—the most common doses have been 100-200mg. Our dosage of LJ100® will be within the most commonly studied dosage range and is consistent with the dose recommended by the supplier.*


EURYCOMA LONGIFOLIA KEY MECHANISMS

Supports healthy immune function*

Supports immunological vigor [3]

Supports adaptive immunity [3,4]

Supports T cell function [3]

Supports immune signaling [5–7]


Supports healthy mood and stress responses*

Supports vitality, emotional well-being, and social functioning [4,8]

Supports stress management [4,8]

Supports healthy behavioral and cognitive responses to stress [9]


Promotes exercise performance*

Supports muscle strength and power [10–13]

Supports peak power output [11]


Supports healthy endocrine signaling*

Supports healthy testosterone levels [8,14–16]

Sex healthy sex hormone-binding globulin (SHBG) levels [16]

Supports healthy cortisol and DHEA stress hormone levels [8,16]


Supports male reproductive health*

Supports sperm quality [17,18]

Supports erectile function [18]

Supports libido [18]


Complementary ingredients*

Polygonum minus for supporting men’s health [19]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1] S.U. Rehman, K. Choe, H.H. Yoo, Molecules 21 (2016) 331.
[2] R. Bhat, A.A. Karim, Fitoterapia 81 (2010) 669–679.
[3] A. George, N. Suzuki, A.B. Abas, K. Mohri, M. Utsuyama, K. Hirokawa, T. Takara, Phytother. Res. 30 (2016) 627–635.
[4] A. George, J. Udani, N.Z. Abidin, A. Yusof, Food Nutr. Res. 62 (2018).
[5] Y.M. Han, S.-U. Woo, M.S. Choi, Y.N. Park, S.H. Kim, H. Yim, H.H. Yoo, Arch. Pharm. Res. 39 (2016) 421–428.
[6] T.V.A. Tran, C. Malainer, S. Schwaiger, A.G. Atanasov, E.H. Heiss, V.M. Dirsch, H. Stuppner, J. Nat. Prod. 77 (2014) 483–488.
[7] J. Ruan, Z. Li, Y. Zhang, Y. Chen, M. Liu, L. Han, Y. Zhang, T. Wang, Molecules 24 (2019).
[8] S.M. Talbott, J.A. Talbott, A. George, M. Pugh, J. Int. Soc. Sports Nutr. 10 (2013) 28.
[9] H.H. Ang, H.S. Cheang, Jpn. J. Pharmacol. 79 (1999) 497–500.
[10] R.R. Henkel, R. Wang, S.H. Bassett, T. Chen, N. Liu, Y. Zhu, M.I. Tambi, Phytother. Res. 28 (2014) 544–550.
[11] C. Chen, F. Ooi, N.A. Kasim, M. Asari, International Journal of Preventive Medicine 10 (2019) 118.
[12] F.K. Ooi, H.A. Mohamed, C.K. Chen, M.A. Asari, IJERSS 2 (2015) 1–10.
[13] S. Hamzah, A. Yusof, Br. J. Sports Med. 37 (2003) 464–470.
[14] M.I.B.M. Tambi, M.K. Imran, R.R. Henkel, Andrologia 44 Suppl 1 (2012) 226–230.
[15] R.R. Henkel, R. Wang, S.H. Bassett, T. Chen, N. Liu, Y. Zhu, M.I. Tambi, Phytother. Res. 28 (2014) 544–550.
[16] M.I.M. Tambi, J.M. Saad, in: First Asian Andrology Forum In Shanghai China, 2002.
[17] M. Tambi, M.K. Imran, Asian J. Androl. (2010).
[18] S.B. Ismail, W.M.Z. Wan Mohammad, A. George, N.H. Nik Hussain, Z.M. Musthapa Kamal, E. Liske, Evid. Based. Complement. Alternat. Med. 2012 (2012) 429268.
[19] J.K. Udani, A.A. George, M. Musthapa, M.N. Pakdaman, A. Abas, Evidence-Based Complementary and Alternative Medicine 2014 (2014) 1–10.

Longvida Optimized Curcumin®

COMMON NAME

Turmeric | Curcumin 


TOP BENEFITS OF LONGVIDA®

Supports cognitive function *

Supports exercise recovery *

Supports joint health *

Supports healthy vision *


WHAT IS LONGVIDA®?

Longvida® was developed by university neuroscientists to overcome issues with the low bioavailability of curcumin [1] and is trademarked as “the Cognitive Curcumin of Choice®” and as “Longvida Optimized Curcumin®.” Curcumin comes from turmeric (Curcuma longa roots, a plant from the ginger family), is the pigment that gives turmeric its characteristic yellow-orange color, and is why turmeric is sometimes referred to as “yellow root” or “golden spice.” Turmeric is widely used as a food spice, especially in South Asia, and has been used in Ayurveda traditional medicine for thousands of years. Longvida® has been clinically studied to support a number of health applications, including, but not limited to, cognitive health, retinal health, vascular health, exercise recovery, sports nutrition, joint health, healthy aging, immune health, and adaptogenic properties.* 


NEUROHACKER’S LONGVIDA® SOURCING

Longvida® is a patented turmeric extract standardized to deliver free curcumin to target tissues, including the brain.*

Longvida® has been used in human clinical studies. It has been a finalist and winner of several awards for outstanding research initiatives. 

Longvida® is a registered trademark of Verdure Sciences®.

Longvida® is non-GMO, gluten-free, and vegan.


LONGVIDA® DOSING PRINCIPLES AND RATIONALE

In human studies, the dose of Longvida® has ranged from 400 mg to 2000 mg/day [2–5], with cognitive studies emphasizing a 400 mg dose, while joint health and exercise recovery have used 800 mg. Our recommended dose was selected to be within the studied range, taking into consideration any complementary features of other ingredients in the formulation and the intended benefits and use of the formula. 


CURCUMIN KEY MECHANISMS

Supports brain function*

Supports working memory (an aspect of executive function) [2,3]

Supports memory [6]

Supports attention [2,6]

Supports neuroprotective functions [6–8]

Supports cognitive function [9–18]

Supports antioxidant defenses and counters oxidative stress [9,11,12,17,19]

Influences immune signaling [11,20]

Supports dendritic spine density and dendritic length [14]

Counters age-related changes in clock gene rhythms in the SCN [21]

Supports brain-derived neurotrophic factor (BDNF) signaling [17]

Influences choline acetyltransferase expression [17]

Supports long-term potentiation (LTP) [22]

Supports brain mitochondrial function [23]

Supports brain ATPase activity (an aspect of brain energetics) [19]

Supports brain Nrf2 signaling and phase II antioxidant gene expression [24].

Supports brain NF-κB signaling [25,26]

Supports neural mitophagy and mitochondrial function [27]

Supports neuronal autophagy [28–30]


Supports a healthy mood *

Supports positive affect [31–33]

Supports calm and relaxed mood [2,32]


Promotes visual health* 

Supports visual function [34–37]

Supports healthy retinal function [35,37–40]

Supports blue light defenses [38]

Supports ocular antioxidant defenses and couters oxidative stress [39,41]

Supports healthy retinal vasculature and blood flow [34,42]


Supports gut health *

Supports gut microbiota [43–48]

Influences gut microbiota metabolism [49]

Supports intestinal barrier function [47,50]


Promotes healthy aging and longevity*

Supports healthy vascular function [4,5]

Supports anti-senescence mechanisms [51–53]

Supports the management of senescent cells [54,55]

Supports cellular functions involved with pruning stressed cells [56–64]

Supports autophagy [52]

Supports stem cell proliferation [53]


Supports cellular signaling* 

Influences PI3K/AKT signaling [58]

Influences NF-κB signaling [7,54,62,63,65]

Influences Nrf2 signaling [54]


Complementary ingredients*

Quercetin for supporting cellular and tissue health [66–71]

Luteolin for supporting endothelial function [72]

Silymarin and silibinin (from milk thistle extracts) for supporting cellular and tissue health [73–79]

Resveratrol in supporting the management of senescent cells [80]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]V.S. Gota, G.B. Maru, T.G. Soni, T.R. Gandhi, N. Kochar, M.G. Agarwal, J. Agric. Food Chem. 58 (2010) 2095–2099.

[2]K.H.M. Cox, A. Pipingas, A.B. Scholey, J. Psychopharmacol. 29 (2015) 642–651.

[3]K.H.M. Cox, D.J. White, A. Pipingas, K. Poorun, A. Scholey, Nutrients 12 (2020).

[4]J.R. Santos-Parker, T.R. Strahler, C.J. Bassett, N.Z. Bispham, M.B. Chonchol, D.R. Seals, Aging 9 (2017) 187–208.

[5]Gerontologist 55 (2015) 195–195.

[6]G.W. Small, P. Siddarth, Z. Li, K.J. Miller, L. Ercoli, N.D. Emerson, J. Martinez, K.-P. Wong, J. Liu, D.A. Merrill, S.T. Chen, S.M. Henning, N. Satyamurthy, S.-C. Huang, D. Heber, J.R. Barrio, Am. J. Geriatr. Psychiatry 26 (2018) 266–277.

[7]Q. Qiao, Y. Jiang, G. Li, Anticancer Drugs 23 (2012) 597–605.

[8]Q.-L. Ma, X. Zuo, F. Yang, O.J. Ubeda, D.J. Gant, M. Alaverdyan, E. Teng, S. Hu, P.-P. Chen, P. Maiti, B. Teter, G.M. Cole, S.A. Frautschy, J. Biol. Chem. 288 (2013) 4056–4065.

[9]M. Belviranlı, N. Okudan, K.E.N. Atalık, M. Öz, Biogerontology 14 (2013) 187–196.

[10]S. Dong, Q. Zeng, E.S. Mitchell, J. Xiu, Y. Duan, C. Li, J.K. Tiwari, Y. Hu, X. Cao, Z. Zhao, PLoS One 7 (2012) e31211.

[11]M.R. Sarker, S. Franks, N. Sumien, N. Thangthaeng, F. Filipetto, M. Forster, PLoS One 10 (2015) e0140431.

[12]C.Y. Sun, S.S. Qi, P. Zhou, H.R. Cui, S.X. Chen, K.Y. Dai, M.L. Tang, Pharmacol. Biochem. Behav. 105 (2013) 76–82.

[13]S.Y. Yu, M. Zhang, J. Luo, L. Zhang, Y. Shao, G. Li, Prog. Neuropsychopharmacol. Biol. Psychiatry 45 (2013) 47–53.

[14]B. Vidal, R.A. Vázquez-Roque, D. Gnecco, R.G. Enríquez, B. Floran, A. Díaz, G. Flores, Synapse 71 (2017).

[15]A. Kumar, A. Prakash, S. Dogra, J. Asian Nat. Prod. Res. 13 (2011) 42–55.

[16]L. Conboy, A.G. Foley, N.M. O’Boyle, M. Lawlor, H.C. Gallagher, K.J. Murphy, C.M. Regan, Biochem. Pharmacol. 77 (2009) 1254–1265.

[17]X. Wu, H. Chen, C. Huang, X. Gu, J. Wang, D. Xu, X. Yu, C. Shuai, L. Chen, S. Li, Y. Xu, T. Gao, M. Ye, W. Su, H. Liu, J. Zhang, C. Wang, J. Chen, Q. Wang, W. Cui, Metab. Brain Dis. 32 (2017) 789–798.

[18]T.L. Moore, B. Bowley, P. Shultz, S. Calderazzo, E. Shobin, R.J. Killiany, D.L. Rosene, M.B. Moss, Geroscience 39 (2017) 571–584.

[19]K. Bala, B.C. Tripathy, D. Sharma, Biogerontology 7 (2006) 81–89.

[20]M. Shailaja, K.M. Damodara Gowda, K. Vishakh, N. Suchetha Kumari, J. Natl. Med. Assoc. 109 (2017) 9–13.

[21]K. Kukkemane, A. Jagota, Biogerontology 20 (2019) 405–419.

[22]Y.-F. Cheng, L. Guo, Y.-S. Xie, Y.-S. Liu, J. Zhang, Q.-W. Wu, J.-M. Li, Neurochem. Res. 38 (2013) 98–107.

[23]G.P. Eckert, C. Schiborr, S. Hagl, R. Abdel-Kader, W.E. Müller, G. Rimbach, J. Frank, Neurochem. Int. 62 (2013) 595–602.

[24]M. Ashrafizadeh, Z. Ahmadi, R. Mohammadinejad, T. Farkhondeh, S. Samarghandian, Curr. Mol. Med. 20 (2020) 116–133.

[25]W. Li, N.C. Suwanwela, S. Patumraj, Microvasc. Res. 106 (2016) 117–127.

[26]H.-T. Zhu, C. Bian, J.-C. Yuan, W.-H. Chu, X. Xiang, F. Chen, C.-S. Wang, H. Feng, J.-K. Lin, J. Neuroinflammation 11 (2014) 59.

[27]W. Wang, J. Xu, Curr. Neurovasc. Res. 17 (2020) 113–122.

[28]L.-T. Yi, S.-Q. Dong, S.-S. Wang, M. Chen, C.-F. Li, D. Geng, J.-X. Zhu, Q. Liu, J. Cheng, Neurobiol. Dis. 136 (2020) 104715.

[29]C. Wang, X. Zhang, Z. Teng, T. Zhang, Y. Li, Eur. J. Pharmacol. 740 (2014) 312–320.

[30]J. Wang, Y. Liu, X.-H. Li, X.-C. Zeng, J. Li, J. Zhou, B. Xiao, K. Hu, Can. J. Physiol. Pharmacol. 95 (2017) 501–509.

[31]B. Kanchanatawan, S. Tangwongchai, A. Sughondhabhirom, S. Suppapitiporn, S. Hemrunrojn, A.F. Carvalho, M. Maes, Neurotox. Res. 33 (2018) 621–633.

[32]S. Asadi, M.S. Gholami, F. Siassi, M. Qorbani, G. Sotoudeh, Phytother. Res. 34 (2020) 896–903.

[33]J.-J. Yu, L.-B. Pei, Y. Zhang, Z.-Y. Wen, J.-L. Yang, J. Clin. Psychopharmacol. 35 (2015) 406–410.

[34]R. Steigerwalt, M. Nebbioso, G. Appendino, G. Belcaro, G. Ciammaichella, U. Cornelli, R. Luzzi, S. Togni, M. Dugall, M.R. Cesarone, E. Ippolito, B.M. Errichi, A. Ledda, M. Hosoi, M. Corsi, Panminerva Med. 54 (2012) 11–16.

[35]F. Mazzolani, S. Togni, Clin. Ophthalmol. 7 (2013) 939–945.

[36]F. Mazzolani, S. Togni, L. Giacomelli, R. Eggenhoffner, F. Franceschi, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 3617–3625.

[37]F. Mazzolani, Clin. Ophthalmol. 6 (2012) 801–806.

[38]S.-I. Park, E.H. Lee, S.R. Kim, Y.P. Jang, J. Pharm. Pharmacol. 69 (2017) 334–340.

[39]M.N.A. Mandal, J.M.R. Patlolla, L. Zheng, M.-P. Agbaga, J.-T.A. Tran, L. Wicker, A. Kasus-Jacobi, M.H. Elliott, C.V. Rao, R.E. Anderson, Free Radic. Biol. Med. 46 (2009) 672–679.

[40]C.B.M. Platania, A. Fidilio, F. Lazzara, C. Piazza, F. Geraci, G. Giurdanella, G.M. Leggio, S. Salomone, F. Drago, C. Bucolo, Front. Pharmacol. 9 (2018) 670.

[41]R.A. Kowluru, M. Kanwar, Nutr. Metab. 4 (2007) 8.

[42]W. Khimmaktong, H. Petpiboolthai, P. Sriya, V. Anupunpisit, J. Med. Assoc. Thai. 97 Suppl 2 (2014) S39–46.

[43]F. Pivari, A. Mingione, G. Piazzini, C. Ceccarani, E. Ottaviano, C. Brasacchio, M. Dei Cas, M. Vischi, M.G. Cozzolino, P. Fogagnolo, A. Riva, G. Petrangolini, L. Barrea, L. Di Renzo, E. Borghi, P. Signorelli, R. Paroni, L. Soldati, Nutrients 14 (2022).

[44]C.T. Peterson, A.R. Vaughn, V. Sharma, D. Chopra, P.J. Mills, S.N. Peterson, R.K. Sivamani, J Evid Based Integr Med 23 (2018) 2515690X18790725.

[45]R.-M.T. McFadden, C.B. Larmonier, K.W. Shehab, M. Midura-Kiela, R. Ramalingam, C.A. Harrison, D.G. Besselsen, J.H. Chase, J.G. Caporaso, C. Jobin, F.K. Ghishan, P.R. Kiela, Inflamm. Bowel Dis. 21 (2015) 2483–2494.

[46]Z.-Z. Sun, X.-Y. Li, S. Wang, L. Shen, H.-F. Ji, Appl. Microbiol. Biotechnol. 104 (2020) 3507–3515.

[47]X. Xu, H. Wang, D. Guo, X. Man, J. Liu, J. Li, C. Luo, M. Zhang, L. Zhen, X. Liu, Ren. Fail. 43 (2021) 1063–1075.

[48]Z. Zhang, Y. Chen, L. Xiang, Z. Wang, G.G. Xiao, J. Hu, Nutrients 9 (2017).

[49]S. Chashmniam, S.R. Mirhafez, M. Dehabeh, M. Hariri, M. Azimi Nezhad, B.F. Nobakht M Gh, Eur. J. Clin. Nutr. 73 (2019) 1224–1235.

[50]J. Wang, S.S. Ghosh, S. Ghosh, Am. J. Physiol. Cell Physiol. 312 (2017) C438–C445.

[51]J.-H. Li, T.-T. Wei, L. Guo, J.-H. Cao, Y.-K. Feng, S.-N. Guo, G.-H. Liu, Y. Ding, Y.-R. Chai, Naunyn. Schmiedebergs. Arch. Pharmacol. 394 (2021) 411–420.

[52]J. Deng, P. Ouyang, W. Li, L. Zhong, C. Gu, L. Shen, S. Cao, L. Yin, Z. Ren, Z. Zuo, J. Deng, Q. Yan, S. Yu, Int. J. Mol. Sci. 22 (2021).

[53]S. Pirmoradi, E. Fathi, R. Farahzadi, Y. Pilehvar-Soltanahmadi, N. Zarghami, Drug Res. 68 (2018) 213–221.

[54]H. Cherif, D.G. Bisson, P. Jarzem, M. Weber, J.A. Ouellet, L. Haglund, J. Clin. Med. Res. 8 (2019).

[55]M.J. Yousefzadeh, Y. Zhu, S.J. McGowan, L. Angelini, H. Fuhrmann-Stroissnigg, M. Xu, Y.Y. Ling, K.I. Melos, T. Pirtskhalava, C.L. Inman, C. McGuckian, E.A. Wade, J.I. Kato, D. Grassi, M. Wentworth, C.E. Burd, E.A. Arriaga, W.L. Ladiges, T. Tchkonia, J.L. Kirkland, P.D. Robbins, L.J. Niedernhofer, EBioMedicine 36 (2018) 18–28.

[56]Y. Zhang, X.-Y. Lin, J.-H. Zhang, Z.-L. Xie, H. Deng, Y.-F. Huang, X.-H. Huang, Oncol. Lett. 17 (2019) 127–134.

[57]C. Sun, S. Zhang, C. Liu, X. Liu, Cancer Biother. Radiopharm. 34 (2019) 634–641.

[58]S. Kuttikrishnan, K.S. Siveen, K.S. Prabhu, A.Q. Khan, E.I. Ahmed, S. Akhtar, T.A. Ali, M. Merhi, S. Dermime, M. Steinhoff, S. Uddin, Front. Oncol. 9 (2019) 484.

[59]X. Xu, Y. Zhu, Am. J. Transl. Res. 9 (2017) 3633–3641.

[60]E.T. Quispe-Soto, G.M. Calaf, Int. J. Oncol. 49 (2016) 2569–2577.

[61]M. Ono, T. Higuchi, M. Takeshima, C. Chen, S. Nakano, Biochem. Biophys. Res. Commun. 436 (2013) 186–191.

[62]M. Shakibaei, A. Mobasheri, C. Lueders, F. Busch, P. Shayan, A. Goel, PLoS One 8 (2013) e57218.

[63]M.A. Khan, S. Gahlot, S. Majumdar, Mol. Cancer Ther. 11 (2012) 1873–1883.

[64]S.J. Lee, C. Krauthauser, V. Maduskuie, P.T. Fawcett, J.M. Olson, S.A. Rajasekaran, BMC Cancer 11 (2011) 144.

[65]Y. Chen, W. Shu, W. Chen, Q. Wu, H. Liu, G. Cui, Basic Clin. Pharmacol. Toxicol. 101 (2007) 427–433.

[66]E. Mutlu Altundağ, A.M. Yılmaz, B.S. Serdar, A.T. Jannuzzi, S. Koçtürk, A.S. Yalçın, Nutr. Cancer 73 (2021) 703–712.

[67]N.S. Srivastava, R.A.K. Srivastava, Phytomedicine 52 (2019) 117–128.

[68]M.M. Abdel-Diam, D.H. Samak, Y.S. El-Sayed, L. Aleya, S. Alarifi, S. Alkahtani, Environ. Sci. Pollut. Res. Int. 26 (2019) 3659–3665.

[69]S. Kundur, A. Prayag, P. Selvakumar, H. Nguyen, L. McKee, C. Cruz, A. Srinivasan, S. Shoyele, A. Lakshmikuttyamma, J. Cell. Physiol. 234 (2019) 11103–11118.

[70]E. Mutlu Altundağ, A.M. Yılmaz, S. Koçtürk, Y. Taga, A.S. Yalçın, Nutr. Cancer 70 (2018) 97–108.

[71]G.H. Heeba, M.E. Mahmoud, A.A. El Hanafy, Toxicol. Ind. Health 30 (2014) 551–560.

[72]L. Zhang, X. Wang, L. Zhang, C. Virgous, H. Si, J. Nutr. Biochem. 73 (2019) 108222.

[73]A. Montgomery, T. Adeyeni, K. San, R.M. Heuertz, U.R. Ezekiel, J. Cancer 7 (2016) 1250–1257.

[74]V. Alfonso-Moreno, A. López-Serrano, E. Moreno-Osset, Rev. Esp. Enferm. Dig. 109 (2017) 875.

[75]S. Dalimi-Asl, H. Babaahmadi-Rezaei, G. Mohammadzadeh, Iran. J. Med. Sci. 45 (2020) 477–484.

[76]S.O. Ali, H.A. Darwish, N.A. Ismail, Basic Clin. Pharmacol. Toxicol. 118 (2016) 369–380.

[77]M. Nasiri, N. Zarghami, K.N. Koshki, M. Mollazadeh, M.P. Moghaddam, M.R. Yamchi, R.J. Esfahlan, A. Barkhordari, A. Alibakhshi, Asian Pac. J. Cancer Prev. 14 (2013) 3449–3453.

[78]N. Abdel-Magied, A.A. Elkady, Exp. Mol. Pathol. 111 (2019) 104299.

[79]H. Avci, E.T. Epikmen, E. Ipek, R. Tunca, S.S. Birincioglu, H. Akşit, S. Sekkin, A.N. Akkoç, M. Boyacioglu, Exp. Toxicol. Pathol. 69 (2017) 317–327.

[80]P. Mohapatra, S.R. Satapathy, S. Siddharth, D. Das, A. Nayak, C.N. Kundu, Int. J. Biochem. Cell Biol. 66 (2015) 75–84.


Piperlongumine (from Piper longum Root Extract)

COMMON NAME

Piperlongumine | Piplartine | Long pepper 


TOP BENEFITS OF PIPERLONGUMINE

Supports healthy aging *

Supports cellular health *

Supports healthy brain aging *

 

WHAT IS PIPERLONGUMINE?

Piperlongumine is an amide-alkaloid found in several species of pepper plants, most notably long pepper (Piper longum) from which it got its name. Long pepper is a close relative of one of the most widely used spices in the world, black pepper (Piper nigrum). The fruits and roots of long pepper are used as spices and in traditional healing systems including those found in India and Thailand. In Ayurveda, long pepper is considered a rasayana (rejuvenator), and black pepper and long pepper, along with ginger—collectively called Trikatu (“three pungent spices”)—is one of the most frequently used spice combinations. Long pepper has a taste similar to, but hotter and more complex than black pepper, and has often been used somewhat interchangeably as a spice: the word “pepper” is actually derived from the Sanskrit word for long pepper (pippali). Piperlongumine is one of the compounds that produce this stronger and more complex taste—long pepper fruits (and roots) contain piperlongumine, while black pepper does not. There has been a growing research interest in piperlongumine, with one of the areas of interest being as a potential senolytic compound.


NEUROHACKER’S PIPERLONGUMINE SOURCING

Piperlongumine is produced from the roots of Piper longum (long pepper). The high-purity standardized extract we use contains not less than 95% piperlongumine.

Piperlongumine is non-GMO, gluten-free, and vegan.


PIPERLONGUMINE DOSING PRINCIPLES AND RATIONALE

Research suggests that piperlongumine has a broad range of effective doses, depending on its intended use and other ingredients it’s combined with. We chose a 50 mg recommended dose for Qualia Senolytic, because the data suggests that this dose may play a complementary role with other ingredients used in the formula, since piperlongumine may have a unique senolytic mechanism [1] and has been reported to complement another senolytic compound [2]. Piperlongumine has been studied in a wide range of doses in animal research, with even very low amounts of piperlongumine—equivalent to about 2 mg daily for humans—supporting aspects of healthy function in mice when added to the diet consistently [3]. Much higher doses, equivalent to several hundred mg daily have also been used in research [4].* 


PIPERLONGUMINE KEY MECHANISMS

Supports brain function*

Supports hippocampal and cognitive function in aged mice [5]

Supports neuroprotective functions [3,6,7]

Supports neural mitochondrial function [6]

Supports cerebral endothelial progenitor cell function [3]

Influences neural immune signaling [8,9]

Influences astrocyte and microglia activation [9]

Supports healthy biobehavioral responses to stress [10,11]


Promotes healthy aging and longevity*

Supports the management of senescent cells [1,2]

Supports cellular functions involved with pruning stressed cells [2,12–21]

Supports autophagy [6,14–17,21–23]

Supports stress resistance [4]

Influences immune signaling [24]

Supports natural killer (NK) cell binding to stressed cells [25]


Supports cellular signaling*

Influences PI3K/AKT signaling [13–15,17,20]

Influences mTOR signaling [13–15,17]

Influences NF-κB signaling [8,13,26]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]X. Zhang, S. Zhang, X. Liu, Y. Wang, J. Chang, X. Zhang, S.G. Mackintosh, A.J. Tackett, Y. He, D. Lv, R.-M. Laberge, J. Campisi, J. Wang, G. Zheng, D. Zhou, Aging Cell 17 (2018) e12780.

[2]Y. Wang, J. Chang, X. Liu, X. Zhang, S. Zhang, X. Zhang, D. Zhou, G. Zheng, Aging 8 (2016) 2915–2926.

[3]X.-H. Dong, C. Peng, Y.-Y. Zhang, Y. Jiang, L.-J. Yang, J.-B. He, X. Tao, C. Zhang, A.F. Chen, H.-H. Xie, Front. Pharmacol. 12 (2021) 689880.

[4]V. Yadav, S.S. Chatterjee, M. Majeed, V. Kumar, J Intercult Ethnopharmacol 4 (2015) 277–283.

[5]J. Go, T.-S. Park, G.-H. Han, H.-Y. Park, Y.-K. Ryu, Y.-H. Kim, J.H. Hwang, D.-H. Choi, J.-R. Noh, D.Y. Hwang, S. Kim, W.K. Oh, C.-H. Lee, K.-S. Kim, Int. J. Mol. Med. 42 (2018) 1875–1884.

[6]J. Liu, W. Liu, Y. Lu, H. Tian, C. Duan, L. Lu, G. Gao, X. Wu, X. Wang, H. Yang, Autophagy 14 (2018) 845–861.

[7]F. Ntagwabira, M. Trujillo, T. McElroy, T. Brown, P. Simmons, D. Sykes, A.R. Allen, Int. J. Mol. Sci. 23 (2022).

[8]N. Kim, J. Do, J.-S. Bae, H.K. Jin, J.-H. Kim, K.-S. Inn, M.S. Oh, J.K. Lee, J. Pharmacol. Sci. 137 (2018) 195–201.

[9]S.M. Gu, J. Yun, D.J. Son, H.Y. Kim, K.T. Nam, H.D. Kim, M.G. Choi, J.S. Choi, Y.M. Kim, S.-B. Han, J.T. Hong, Free Radic. Biol. Med. 103 (2017) 133–145.

[10]L. Zhang, C. Liu, M. Yuan, C. Huang, L. Chen, T. Su, Z. Liao, L. Gan, Behav. Pharmacol. 30 (2019) 722–729.

[11]V. Yadav, S.S. Chatterjee, M. Majeed, V. Kumar, Afr. J. Tradit. Complement. Altern. Med. 6 (2016) 413–423.

[12]D. Basak, S.R. Punganuru, K.S. Srivenugopal, Int. J. Oncol. 48 (2016) 1426–1436.

[13]S. Kumar, N. Agnihotri, Biomed. Pharmacother. 109 (2019) 1462–1477.

[14]H. Wang, Y. Wang, H. Gao, B. Wang, L. Dou, Y. Li, Oncol. Lett. 15 (2018) 1423–1428.

[15]F. Wang, Y. Mao, Q. You, D. Hua, D. Cai, Int. J. Immunopathol. Pharmacol. 28 (2015) 362–373.

[16]S.-Y. Chen, H.-Y. Huang, H.-P. Lin, C.-Y. Fang, Int. J. Mol. Med. (2019).

[17]P. Makhov, K. Golovine, E. Teper, A. Kutikov, R. Mehrazin, A. Corcoran, A. Tulin, R.G. Uzzo, V.M. Kolenko, Br. J. Cancer 110 (2014) 899–907.

[18]Q. Kang, S. Yan, Exp. Ther. Med. 9 (2015) 1345–1350.

[19]N. Allaman-Pillet, D.F. Schorderet, Oncotarget 12 (2021) 907–916.

[20]J. Zhou, Z. Huang, X. Ni, C. Lv, Toxicol. In Vitro 65 (2020) 104775.

[21]X.-X. Xiong, J.-M. Liu, X.-Y. Qiu, F. Pan, S.-B. Yu, X.-Q. Chen, Acta Pharmacol. Sin. 36 (2015) 362–374.

[22]Y. Wang, J.-W. Wang, X. Xiao, Y. Shan, B. Xue, G. Jiang, Q. He, J. Chen, H.-G. Xu, R.-X. Zhao, K.D. Werle, R. Cui, J. Liang, Y.-L. Li, Z.-X. Xu, Cell Death Dis. 4 (2013) e824.

[23]W. Ye, T. Tang, Z. Li, X. Li, Q. Huang, J. Cardiol. 79 (2022) 134–143.

[24]J. Shi, Y. Xia, H. Wang, Z. Yi, R. Zhang, X. Zhang, Front. Pharmacol. 12 (2021) 818326.

[25]L.O. Afolabi, J. Bi, L. Chen, X. Wan, Int. Immunopharmacol. 96 (2021) 107658.

[26]S. Kumar, N. Agnihotri, Mol. Cell. Biochem. 476 (2021) 1765–1781.

Ginger Root Extract

COMMON NAME

Ginger


TOP BENEFITS OF GINGER ROOT EXTRACT

Supports healthy vision *

Supports cognitive function * 

Supports gastrointestinal health *


WHAT IS GINGER ROOT EXTRACT?

Ginger is the common name for the whole or cut rhizome—the underground stem or vertical portion of the root—of the plant Zingiber officinale. Ginger has a long history of use as a food spice—it is one of the most widely used spices in the world. It also has a long history of use in Traditional Chinese Medicine (TCM), Ayurveda, and other healing systems. Ginger can be used alone, but is very commonly a part of poly-ingredient herbal combinations. In Ayurveda, as an example, the combination of ginger, black pepper, and long pepper, called Trikatu (“three pungent spices”), is frequently used together and also added to many other herb mixes. Modern science has discovered that ginger is a bioenhancer, positively influencing the bioavailability of some other compounds, which may partly explain why it’s often been combined with other herbs. Ginger contains many bioactive compounds, including several phenolic and terpene compounds. Gingerols, the compounds primarily responsible for the pungency of ginger root, are one of its main bioactive compounds. These pungent principles give ginger it’s characteristic flavor and spiciness; they also confer a number of health benefits. Ginger was used for a large number of health purposes historically. Modern science continues to investigate ginger in a wide range of areas, including brain, gastrointestinal, metabolic, musculoskeletal, and vision health.*


NEUROHACKER’S GINGER ROOT EXTRACT SOURCING

Ginger Root Extract is standardized to contain not less than 5% Gingerols. Gingerols are among ginger’s main bioactive compounds that confer a number of health benefits.

Ginger Root Extract is gluten-free, non-GMO, vegan, Kosher, and Halal certified.


GINGER ROOT EXTRACT DOSING PRINCIPLES AND RATIONALE

Standardized ginger root extracts have been typically dosed from several hundred to 800 mg when used alone in human clinical studies. Given the responses to ginger in studies that have compared different doses, we consider ginger extracts to follow threshold dosing principles (see Neurohacker Dosing Principles), where much of the benefits occur in the lower-to-middle end of the dosage range. When ginger extracts are combined with other herbs, the dose used would normally be at the low end of the range. The dose of ginger extract used in our formulas will be dictated by what it’s being used to do and will follow dosage amounts consistent with using an extract with a standardized amount of gingerols, ginger’s main bioactive compounds When ginger extract is in a formula primarily for its role as a bioenhancer to enhance the bioavailability of other ingredients, the dose will be low (similar to piperine, it has not required a high dose of ginger for bioenhancement). When used for other purposes, the dose will be consistent with dose ranges for that purpose taking into account the other herb extracts used in combination with the ginger extract.*

 

GINGER ROOT EXTRACT KEY MECHANISMS

Supports vision*

Supports healthy retinal function [1]

Supports healthy lens function [2,3]

Supports protection from advanced glycation end-products (AGEs) formation in the eye lens [1,2]

Supports antioxidant defenses [4]

Supports retinal microvasculature [5]


Supports brain function*

Supports cognitive function [6,7]

Supports neuroprotective functions [8–11]


Supports gastrointestinal function*

Supports healthy gut microbiome function [12–15]

Supports digestive function (e.g., gastrointestinal motility, emptying, abdominal comfort) [16–19]

Supports gut-brain axis [20–23]

Supports mucosal- and gastro-protective functions [24,25]


Supports antioxidant defenses*

Free radical scavenger [10,26]

Counters ROS production and oxidative stress [27–29]

Supports antioxidant defenses [27–31]

Supports Nrf-2 signaling [27,31,32]


Bioavailability enhancement*

Enhances bioavailability of β-carotene [33,34]

Enhances bioavailability of minerals including calcium, iron, and zinc [35]

Enhances lipid absorption by promoting bile acid secretion and lipase enzymes (so would be expected to support absorption of many fat-soluble nutrients) [36]

Supports microvilli length and greater absorptive surface of the small intestine [37]


Complementary ingredients*

Ginkgo biloba for mood support [38–41]

Artichoke for digestive support [42]

Magnolia bark for mood support [43]

Turmeric for joint support [44] and metabolic health [45]

Alpinia galanga for joint support [46]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]C. Sampath, Y. Zhu, S. Sang, M. Ahmedna, Phytomedicine 23 (2016) 200–213.

[2]M. Saraswat, P. Suryanarayana, P.Y. Reddy, M.A. Patil, N. Balakrishna, G.B. Reddy, Mol. Vis. 16 (2010) 1525–1537.

[3]A. Kato, Y. Higuchi, H. Goto, H. Kizu, T. Okamoto, N. Asano, J. Hollinshead, R.J. Nash, I. Adachi, J. Agric. Food Chem. 54 (2006) 6640–6644.

[4]A. Akbari, K. Nasiri, M. Heydari, Avicenna J Phytomed 10 (2020) 365–371.

[5]S. Dongare, S.K. Gupta, R. Mathur, R. Saxena, S. Mathur, R. Agarwal, T.C. Nag, S. Srivastava, P. Kumar, Mol. Vis. 22 (2016) 599–609.

[6]N. Saenghong, J. Wattanathorn, S. Muchimapura, T. Tongun, N. Piyavhatkul, C. Banchonglikitkul, T. Kajsongkram, Evid. Based. Complement. Alternat. Med. 2012 (2012) 383062.

[7]S. Lim, M. Moon, H. Oh, H.G. Kim, S.Y. Kim, M.S. Oh, J. Nutr. Biochem. 25 (2014) 1058–1065.

[8]G. Park, H.G. Kim, M.S. Ju, S.K. Ha, Y. Park, S.Y. Kim, M.S. Oh, Acta Pharmacol. Sin. 34 (2013) 1131–1139.

[9]E. Huh, S. Lim, H.G. Kim, S.K. Ha, H.-Y. Park, Y. Huh, M.S. Oh, Food Funct. 9 (2018) 171–178.

[10]J. Yao, C. Ge, D. Duan, B. Zhang, X. Cui, S. Peng, Y. Liu, J. Fang, J. Agric. Food Chem. 62 (2014) 5507–5518.

[11]G.-F. Zeng, Z.-Y. Zhang, L. Lu, D.-Q. Xiao, S.-H. Zong, J.-M. He, Rejuvenation Res. 16 (2013) 124–133.

[12]X. Wang, D. Zhang, H. Jiang, S. Zhang, X. Pang, S. Gao, H. Zhang, S. Zhang, Q. Xiao, L. Chen, S. Wang, D. Qi, Y. Li, Front. Microbiol. 11 (2020) 576061.

[13]Z.-J. Ma, H.-J. Wang, X.-J. Ma, Y. Li, H.-J. Yang, H. Li, J.-R. Su, C.-E. Zhang, L.-Q. Huang, Food Funct. 11 (2020) 10839–10851.

[14]J. Wang, P. Wang, D. Li, X. Hu, F. Chen, Eur. J. Nutr. 59 (2020) 699–718.

[15]A.K. Samanta, C. Jayaram, N. Jayapal, N. Sondhi, A.P. Kolte, S. Senani, M. Sridhar, A. Dhali, PLoS One 10 (2015) e0132961.

[16]S.K. Panda MPharm, S. Nirvanashetty PhD, V.A. Parachur BTech, C. Krishnamoorthy MPharm, S. Dey MSc, J. Diet. Suppl. (2020) 1–13.

[17]M. Nikkhah Bodagh, I. Maleki, A. Hekmatdoost, Food Sci Nutr 7 (2019) 96–108.

[18]K.-L. Wu, C.K. Rayner, S.-K. Chuah, C.-S. Changchien, S.-N. Lu, Y.-C. Chiu, K.-W. Chiu, C.-M. Lee, Eur. J. Gastroenterol. Hepatol. 20 (2008) 436–440.

[19]M.A.L. van Tilburg, O.S. Palsson, Y. Ringel, W.E. Whitehead, Complement. Ther. Med. 22 (2014) 17–20.

[20]A. Giacosa, P. Morazzoni, E. Bombardelli, A. Riva, G. Bianchi Porro, M. Rondanelli, Eur. Rev. Med. Pharmacol. Sci. 19 (2015) 1291–1296.

[21]I. Lete, J. Alluέ, Integr. Med. 11 (2016) IMI.S36273.

[22]H.H. Pertz, J. Lehmann, R. Roth-Ehrang, S. Elz, Planta Med. 77 (2011) 973–978.

[23]I. Ullah, F. Subhan, M. Ayaz, R. Shah, G. Ali, I.U. Haq, S. Ullah, BMC Complement. Altern. Med. 15 (2015) 34.

[24]V.N. Drozdov, V.A. Kim, E.V. Tkachenko, G.G. Varvanina, J. Altern. Complement. Med. 18 (2012) 583–588.

[25]J.K. Ko, C.C. Leung, J. Gastroenterol. Hepatol. 25 (2010) 1861–1868.

[26]S. Dugasani, M.R. Pichika, V.D. Nadarajah, M.K. Balijepalli, S. Tandra, J.N. Korlakunta, J. Ethnopharmacol. 127 (2010) 515–520.

[27]K. Ji, L. Fang, H. Zhao, Q. Li, Y. Shi, C. Xu, Y. Wang, L. Du, J. Wang, Q. Liu, Oxid. Med. Cell. Longev. 2017 (2017) 1480294.

[28]A. Hosseinzadeh, K. Bahrampour Juybari, M.J. Fatemi, T. Kamarul, A. Bagheri, N. Tekiyehmaroof, A.M. Sharifi, Cells Tissues Organs 204 (2017) 241–250.

[29]A.O. Abolaji, M. Ojo, T.T. Afolabi, M.D. Arowoogun, D. Nwawolor, E.O. Farombi, Chem. Biol. Interact. 270 (2017) 15–23.

[30]C. Lee, G.H. Park, C.-Y. Kim, J.-H. Jang, Food Chem. Toxicol. 49 (2011) 1261–1269.

[31]S. Peng, J. Yao, Y. Liu, D. Duan, X. Zhang, J. Fang, Food Funct. 6 (2015) 2813–2823.

[32]E. Schadich, J. Hlaváč, T. Volná, L. Varanasi, M. Hajdúch, P. Džubák, Biomed Res. Int. 2016 (2016) 2173275.

[33]S. Veda, K. Srinivasan, J. Funct. Foods 1 (2009) 394–398.

[34]S. Veda, K. Srinivasan, Br. J. Nutr. 105 (2011) 1429–1438.

[35]U.N.S. Prakash, K. Srinivasan, Journal of Trace Elements in Medicine and Biology 27 (2013) 184–190.

[36]U.N.S. Prakash, K. Srinivasan, Journal of the Science of Food and Agriculture 92 (2012) 503–510.

[37]U.N.S. Prakash, K. Srinivasan, Br. J. Nutr. 104 (2010) 31–39.

[38]R.U. Hasenöhrl, C.H. Nichau, C.H. Frisch, M.A. De Souza Silva, J.P. Huston, C.M. Mattern, R. Häcker, Pharmacol. Biochem. Behav. 53 (1996) 271–275.

[39]R.U. Hasenöhrl, B. Topic, C. Frisch, R. Häcker, C.M. Mattern, J.P. Huston, Pharmacol. Biochem. Behav. 59 (1998) 527–535.

[40]B. Topic, R.U. Hasenöhrl, R. Häcker, J.P. Huston, Phytother. Res. 16 (2002) 312–315.

[41]B. Topic, E. Tani, K. Tsiakitzis, P.N. Kourounakis, E. Dere, R.U. Hasenöhrl, R. Häcker, C.M. Mattern, J.P. Huston, Neurobiol. Aging 23 (2002) 135–143.

[42]A. Giacosa, D. Guido, M. Grassi, A. Riva, P. Morazzoni, E. Bombardelli, S. Perna, M.A. Faliva, M. Rondanelli, Evid. Based. Complement. Alternat. Med. 2015 (2015).

[43]L.-Q. Qiang, C.-P. Wang, F.-M. Wang, Y. Pan, L.-T. Yi, X. Zhang, L.-D. Kong, Arch. Pharm. Res. 32 (2009) 1281–1292.

[44]M. Heidari-Beni, A.R. Moravejolahkami, P. Gorgian, G. Askari, M.J. Tarrahi, N. Bahreini-Esfahani, Phytother. Res. 34 (2020) 2067–2073.

[45]N. Hussain, A.-S. Hashmi, M. Wasim, T. Akhtar, S. Saeed, T. Ahmad, Pak. J. Pharm. Sci. 31 (2018) 491–498.

[46]R.D. Altman, K.C. Marcussen, Arthritis Rheum. 44 (2001) 2531–2538.