Adaptogen Extracts

Herbal adaptogens concentrating active compounds while maintaining complex synergistic co-factors – supporting Adrenal/ HPA regulation, Long Term Potentiation, AMPK activation, neurogenesis, catecholamine production, tissue regeneration, and many regulatory functions.

EnXtra® Alpinia Galanga


Greater Galangal | Thai Ginger | Siamese Ginger


  • Sharpens alertness and focus*
  • Amplifies caffeine’s nootropic benefits*
  • Supports brain and cognitive function*


Alpinia galanga is native to Southeast Asia, where it’s used as a food and herb.[1]. It is part of the ginger family, and, similar to ginger, the rhizome, or creeping rootstalk is what’s used. The rhizome has a pungent smell reminiscent of black pepper and pine. The similarity in appearance to the ginger rhizome has led to one of its common names, Thai ginger. In some traditional medical systems, it is regarded as being superior to ginger. EnXtra® is a clinically studied and standardized Alpinia galanga rhizome extract. In humans studies, EnXtra® has been synergistic with caffeine. In a clinical study, supplementation with EnXtra® supported alertness and focus It’s clinically proven to improve alertness and focus for up to 5 hours with and without caffeine. EnXtra® can be used as a replacement for caffeine or used with caffeine to prevent crash and prolong caffeine’s nootropic benefits.[2]


EnXtra® has been used in human clinical studies, where it has enhanced alertness and focus, and amplified the nootropic response to caffeine.

EnXtra® is created by Enovate Biolife, and is standardized for total polyphenols (not less than [NLT] 3%), flavanoids (NLT 4%), polysaccharides (NLT 20%) and pyrocatecollic type tannins (NLT 1%). 

EnXtra® is responsibly sourced. It is cultivated without pesticides in hilly terrain and hand picked to ensure optimum potency. It is DNA authenticated to ensure botanical identification.

EnXtra® is GRAS affirmed, non-GMO, gluten-free, vegan, Kosher certified and Halal compliant.

Grown in India.

EnXtra® is a registered trademark of Enovate Bioscience. 


We consider Alpinia galanga to be in the adaptogenic herb category; following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is consistent with the studied amount in the human clinical studies.*


Cognitive function

  • Supports mental alertness [2]
  • Supports attention [3]
  • Supports memory [4,5]

Brain function

  • Neuroprotective effects [4–6]
  • CNS stimulant activity [7]
  • Supports locomotor activity and motor coordination [7]
  • Downregulates acetylcholinesterase (AChE) levels/activity in the brain [4,5]
  • Downregulates monoamine oxidase (MAO) A and B levels/activity in the brain [5]

Antioxidant defenses

  • Upregulates antioxidant enzymes in the brain (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [4–6,8]
  • Replenishes glutathione (GSH) levels [8]
  • Downregulates lipid peroxidation [6,8]

Other effects

  • Supports healthy cardiometabolic parameters [8,9]
  • Immunostimulant activity [10]


  • Caffeine — supports sustained attention [2]


[1]D. Kaushik, J. Yadav, P. Kaushik, D. Sacher, R. Rani, Zhong Xi Yi Jie He Xue Bao 9 (2011) 1061–1065.
[2]S. Srivastava, M. Mennemeier, S. Pimple, J. Am. Coll. Nutr. 36 (2017) 631–639.
[3]S. Shalini Srivastava, BAOJN 3 (2017) 1–10.
[4]J.C. Hanish Singh, V. Alagarsamy, P.V. Diwan, S. Sathesh Kumar, J.C. Nisha, Y. Narsimha Reddy, J. Ethnopharmacol. 138 (2011) 85–91.
[5]J.C. Hanish Singh, V. Alagarsamy, S. Sathesh Kumar, Y. Narsimha Reddy, Phytother. Res. 25 (2011) 1061–1067.
[6]R. Mundugaru, S. Sivanesan, P. Udaykumar, V. Dj, S.N. Prabhu, B. Ravishankar, IJPER 52 (2018) s77–s85.
[7]S. Saha, S. Banerjee, Indian J. Exp. Biol. 51 (2013) 828–832.
[8]P. Kaushik, D. Kaushik, J. Yadav, P. Pahwa, Pak. J. Biol. Sci. 16 (2013) 804–811.
[9]R.K. Verma, G. Mishra, P. Singh, K.K. Jha, R.L. Khosa, Ayu 36 (2015) 91–95.
[10]D. Bendjeddou, K. Lalaoui, D. Satta, J. Ethnopharmacol. 88 (2003) 155–160.

Sensoril® Ashwagandha Withania somnifera Root and Leaf Extract

Withania somnifera Common Name

Ashwagandha | Indian ginseng

Top Benefits of Withania somnifera

  • Supports healthy aging* 
  • Supports energy*
  • Supports a healthy stress response*
  • Supports exercise performance*
  • Supports healthy weight* 
  • Supports healthy metabolism*  
  • Supports mitochondrial structure and function* 
  • Supports antioxidant defenses* 
  • Supports brain function and mental cognition* 
  • Supports thyroid function*  
  • Supports healthy joint function*
  • Supports blood sugar balance*
  • Supports sleep*

What is Withania somnifera?

Ashwagandha is an Ayurvedic herb with adaptogenic properties—it’s often referred to as “Indian ginseng.” Ashwagandha has a long history of use and has been reported to have several health-promoting effects, supporting healthy energy, metabolism, stress response, physical performance, sleep, joint health, and cognitive performance. The novel active constituents are a group of plant compounds called withanolide glycosides. Sensoril® root and leaf extract is standardized for withanolide glycoside content.

Neurohacker’s Withania somnifera Sourcing

Sensoril® has been clinically tested in 10 randomized, double-blind, placebo-controlled human trials.

Created by Natreon Inc., a leader in scientifically studied and tested Ayurvedic ingredients.

Leaf and root extract triple standardized to contain a minimum of 10% withanolide glycosides, the main bioactive; a minimum of 32% oligosaccharides, which increase the bioavailability of the withanolide glycosides; and a maximum of 0.5% free withanolides (as Withaferin A).

Protected by multiple U.S. patents with self-affirmed generally recognized as safe (GRAS) status). 

Vegetarian ● Organic compliant or certified organic ● Non-GMO Allergen & Gluten-free ● Kosher & Halal certified

Withania somnifera Dosing Principles and Rationale

We consider Ashwagandha to be an herbal adaptogen, so expect it to follow hormetic dosing principles (see Neurohacker Dosing Principles). Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone; it’s just as important not to be above it. So, it’s important to identify the lowest dose that can produce the desired response. Sensoril®—the standardized extract we use—produced a threshold  response in a study that gave different daily dosages—125 mg, 250 mg, 500 mg. Effect size was slightly greater for the higher doses, but most of the change was evident with the lowest dose. 1 We opted for this lower dose to be consistent with a core hormetic principle—only do or use as much as something as would be needed to stimulate the desired response.

Withania somnifera Key Mechanisms 

Mitochondrial structure and function

  • Supports mitochondrial membrane potential and structural integrity 2
  • Protects from mitochondrial damage 2
  • Protects from mitochondrial membrane permeabilization 3
  • Protects from complex I-V Inhibition (protects electron transport chain and oxidative phosphorylation performance) 2,4–6
  • Upregulates citric acid cycle enzymes 6

Improves exercise performance (ergogenic effect)

  • Supports endurance performance 7,8
  • Supports muscle strength 9,10
  • Supports post-exercise recovery 10


  • Supports healthy insulin sensitivity 11–15
  • Supports healthy blood glucose levels 12–16
  • Supports healthy leptin signaling 11,15

Body weight 

  • Supports healthy body weight 11,15
  • Supports healthy feeding behaviors 11,17
  • Upregulates lean mass 10

Antioxidant defenses

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) 2,4,5,16,18
  • Replenishes glutathione (GSH) levels 2,4,16
  • Downregulates oxidative stress and reactive oxygen species levels 2–4,19

Cellular signaling 

  • Downregulates the expression of proinflammatory cytokines – tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1β), and IL-6 11–13

Brain function

  • Supports cognitive and psychomotor performance 20,21
  • Supports memory, executive function, attention, and information processing speed 22
  • Neuroprotective – protects from neuronal mitochondrial swelling and apoptosis; protects cognitive function (ischemia, oxidative stress) 2
  • Protects from neurotoxicity 4,5
  • Downregulates the basal activity levels of acetylcholine esterase 4
  • Upregulates dopamine levels 4
  • Supports mood 11
  • Regulates neural cytokine signaling 11
  • Supports quality of sleep 9

Thyroid function

  • Supports thyroid function 23–25

Stress response

  • Supports stress management 1,17,26
  • Downregulates serum cortisol levels 1,17,26
  • Downregulates endoplasmic reticulum (ER) stress 15

Healthy aging and longevity 

  • Lifespan extension effects (Caenorhabditis elegans) 19,27
  • Upregulates insulin-like growth factor-1 (IGF-1) signaling pathway 19,27
  • Downregulates α-synuclein and amyloid-β aggregation 19
  • Upregulates FOXO3A and SIRT3 28


1. Auddy B, et al. Journal of American Nutraceutical Association. 2008;11:50-56.
2. Sood A, et al. Metab Brain Dis. 2018;33(4):1261-1274. doi:10.1007/s11011-018-0234-2
3. Parihar P, et al. Cell Mol Biol . 2016;62(1):73-83. PMID: 26828992.
4. Manjunath MJ, Muralidhara. J Food Sci Technol. 2015;52(4):1971-1981. doi:10.1007/s13197-013-1219-0
5. Kumar P, Kumar A. J Med Food. 2009;12(3):591-600. doi:10.1089/jmf.2008.0028
6. Senthilnathan P, et al. Life Sci. 2006;78(9):1010-1014. doi:10.1016/j.lfs.2005.06.005
7. Sandhu JS, et al. Int J Ayurveda Res. 2010;1(3):144-149. doi:10.4103/0974-7788.72485
8. Choudhary B, et al. Ayu. 2015;36(1):63-68. doi:10.4103/0974-8520.169002
9. Raut AA, et al. J Ayurveda Integr Med. 2012;3(3):111-114. doi:10.4103/0975-9476.100168
10. Wankhede S, et al. J Int Soc Sports Nutr. 2015;12:43. doi:10.1186/s12970-015-0104-9
11. Kaur T, Kaur G. J Neuroinflammation. 2017;14(1):201. doi:10.1186/s12974-017-0975-6
12. Shahraki MR, et al. J Basic Clin Physiol Pharmacol. 2016;27(4):387-391. doi:10.1515/jbcpp-2015-0053
13. Samadi Noshahr Z, et al. Rep Biochem Mol Biol. 2015;3(2):62-67. PMID: 26989739.
14. Anwer T, et al. Basic Clin Pharmacol Toxicol. 2008;102(6):498-503. doi:10.1111/j.1742-7843.2008.00223.x
15. Lee J, et al. Nat Med. 2016;22(9):1023-1032. doi:10.1038/nm.4145
16. Anwer T, et al. Acta Pol Pharm. 2012;69(6):1095-1101. PMID: 23285670.
17. Choudhary D, et al. J Evid Based Complem Altern Med. 2017;22(1):96-106. doi:10.1177/2156587216641830
18. Gupta SK, et al. Drug Metabol Drug Interact. 2003;19(3):211-222. PMID: 14682611.
19. Akhoon BA, et al. Exp Gerontol. 2016;78:47-56. doi:10.1016/j.exger.2016.03.004
20. Pingali U, et al. Pharmacognosy Res. 2014;6(1):12-18. doi:10.4103/0974-8490.122912
21. Chengappa KNR, et al. J Clin Psychiatry. 2013;74(11):1076-1083. doi:10.4088/JCP.13m08413
22. Choudhary D, et al. J Diet Suppl. 2017;14(6):599-612. doi:10.1080/19390211.2017.1284970
23. Sharma AK, et al. J Altern Complement Med. 2018;24(3):243-248. doi:10.1089/acm.2017.0183
24. Gannon JM, et al. J Ayurveda Integr Med. 2014;5(4):241-245. doi:10.4103/0975-9476.146566
25. Jatwa R, Kar A. Phytother Res. 2009;23(8):1140-1145. doi:10.1002/ptr.2765
26. Chandrasekhar K, et al. Indian J Psychol Med. 2012;34(3):255-262. doi:10.4103/0253-7176.106022
27. Akhoon BA, et al. Exp Gerontol. 2018;104:113-117. doi:10.1016/j.exger.2018.02.004
28. Pradhan R, et al. Exp Gerontol. 2017;95:9-15. doi:10.1016/j.exger.2017.05.013

Gynostemma pentaphyllum

Gynostemma pentaphyllum Common Name

Gynostemma | Southern Ginseng | Jiaogulan

Top Benefits of Gynostemma pentaphyllum

  • Supports healthy weight*
  • Supports metabolism*
  • Supports exercise performance*
  • Supports mitochondrial structure and function*
  • Supports cellular responses and antioxidant defenses*
  • Supports brain health*
  • Support cardiovascular health*
  • Supports kidney health*
  • Supports liver health*
  • Supports gastrointestinal health*
  • Supports healthy gut microbiota*

What is Gynostemma pentaphyllum?

Gynostemma pentaphyllum (Southern Ginseng) is an herb given Ginseng status although not related to Panax Ginseng. Until recently it was a locally-known herb used primarily in mountainous regions of southern China and in northern Vietnam. It is described by the local inhabitants as the "immortality herb,” because people within Guizhou Province, where jiaogulan herbal teas are consumed regularly, are said to have a history of unusual longevity. 

Neurohacker’s Gynostemma pentaphyllum Sourcing

A Gynostemma pentaphyllum extract was selected to be standardized to contain 98% gypenosides.

We opted for a standardized extract for two reasons. Gypenosides are thought to be responsible for much of this herb’s functional benefits. And they have been the primary focus of the majority of the research on this plant.

Studies of this extract suggest it supports cellular and metabolic adaptations similar to what might be expected with exercise. *

Gynostemma pentaphyllum Dosing Principles and Rationale

We consider Gynostemma pentaphyllum to be an herbal adaptogen, which would follow hormetic dosing principles (see Neurohacker Dosing Principles). It contains a category of triterpenoid saponin compounds called gypenosides. These share many structural and functional similarities with the ginsenoside compounds found in well-known ginseng adaptogens. We’d expect this extract to produce an additive or synergistic response when combined with other polyphenol ingredients, based on existing experimental evidence. The dose we’ve selected is within the hormetic range, a dose range we expect will produce positive adaptive responses over time.

Gynostemma pentaphyllum Key Mechanisms 

Mitochondrial Structure

  • Supports mitochondrial membrane integrity 1
  • Protects mitochondrial structure 2

Mitochondrial Function

  • Stimulates ATP Production/Output 1
  • Supports mitochondrial complex I-V performance 1
  • Supports citric acid cycle function — upregulates citrate synthase 1
  • Supports mitochondrial β-oxidation 3
  • Protects mitochondrial function 2

Signaling pathways

  • Upregulates AMP-activated protein kinase (AMPK) siganling 3,4
  • Downregulates mTOR signaling 5
  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) 6–9

Exercise performance (ergogenic effect)

  • Supports endurance performance 10
  • Downregulates lactic acid production 10
  • Supports oxygen supply to tissues by hemoglobin 10
  • Supports glucose uptake in muscle cells (in vitro) 3


  • Supports healthy insulin sensitivity 11–16
  • Supports healthy blood glucose levels 11,17
  • Supports metabolic homeostasis (activates AMPK, an energy sensor and metabolic regulator) 3,4

Body weight 

  • Supports β-oxidation (fatty acid metabolism) 3
  • Downregulates adipogenesis - downregulates peroxisome proliferator-activated receptor gamma (PPARγ) 3
  • Supports healthy body weight 3,18
  • Downregulates fat accumulation and blood/liver lipid levels 3,8,17
  • Supports healthy abdominal/visceral fat levels 18
  • Upregulates brown adipose tissue production 16

Antioxidant defenses

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], glutathione peroxidase [GPx]) 1,8,19–21
  • Replenishes glutathione (GSH) levels 20–22

Cellular signaling

  • Downregulates proinflammatory signaling (inducible nitric oxide synthase [iNOS], nuclear factor kappa B [NF-κB]) 6,23

Brain function

  • Protects cognitive function 19,24
  • Supports resistance to stress and mood — adaptogenic effect 25
  • Protects neurons from oxidative damage 19–22
  • Protects neurons from hypoxia 2
  • Protects neurons from neurotoxic agents 20–22,26
  • Upregulates brain-derived neurotrophic factor (BDNF) expression 24

Protection of organs and systems

  • Protects from cardiac injury and dysfunction 1,27
  • Protects from vascular injury and dysfunction 7,28
  • Protects liver structure and function 8,29,30
  • Protects kidney structure and function 31,32
  • Protects gastrointestinal structure and function 32,33

Gut microbiota

  • Regulates the composition of the gut microbiota 16,34,35
  • Regulates gut microbial metabolism
  • Modulates gut microbial gene expression
  • Supports healthy gut barrier function 34
  • Downregulates gut oxidative stress 
  • Downregulates gut inflammatory signaling 34


  • Grape seed extract (insulin sensitivity) 15


1. Yu H, et al. Cell Stress Chaperones. 2016;21(3):429-437. doi:10.1007/s12192-016-0669-5
2. Schild L, et al. Phytomedicine. 2009;16(8):734-743. doi:10.1016/j.phymed.2009.03.006
3. Gauhar R, et al. Biotechnol Lett. 2012;34(9):1607-1616. doi:10.1007/s10529-012-0944-1
4. Nguyen PH, et al. Bioorg Med Chem. 2011;19(21):6254-6260. doi:10.1016/j.bmc.2011.09.013
5. Tai WC-S, et al. Proteomics. 2016;16(10):1557-1569. doi:10.1002/pmic.201500293
6. Huang TH-W, et al. J Biomed Sci. 2006;13(4):535-548. doi:10.1007/s11373-006-9076-8
7. Huang TH-W, et al. Eur J Pharmacol. 2007;565(1-3):158-165. doi:10.1016/j.ejphar.2007.03.013
8. Qin R, et al. Arch Pharm Res. 2012;35(7):1241-1250. doi:10.1007/s12272-012-0715-5
9. Huang TH-W, et al. Toxicol Appl Pharmacol. 2007;218(1):30-36. doi:10.1016/j.taap.2006.10.013
10. Lin-Na S, Yong-Xiu S. Afr J Tradit Complement Altern Med. 2014;11(3):112-117. PMID: 25371572.
11. Yeo J, et al. J Med Food. 2008;11(4):709-716. doi:10.1089/jmf.2007.0148
12. Huyen VTT, et al. J Nutr Metab. 2013;2013:765383. doi:10.1155/2013/765383
13. Huyen VTT, et al. Evid Based Complement Alternat Med. 2012;2012:452313. doi:10.1155/2012/452313
14. Huyen VTT, et al. Horm Metab Res. 2010;42(5):353-357. doi:10.1055/s-0030-1248298
15. Zhang H-J, et al. J Food Sci. 2009;74(1):H1-H7. doi:10.1111/j.1750-3841.2008.00976.x
16. Liu J, et al. J Agric Food Chem. 2017;65(42):9237-9246. doi:10.1021/acs.jafc.7b03382
17. Megalli S, et al. J Pharm Pharm Sci. 2006;9(3):281-291.
18. Park S-H, et al. Obesity . 2014;22(1):63-71. doi:10.1002/oby.20539
19. Zhang G-L, et al. Behav Pharmacol. 2011;22(7):633-644. doi:10.1097/FBP.0b013e32834afef9
20. Wang P, et al. J Int Med Res. 2010;38(3):1084-1092. doi:10.1177/147323001003800336
21. Wang P, et al. Brain Res Bull. 2010;83(5):266-271. doi:10.1016/j.brainresbull.2010.06.014
22. Shang L, et al. Brain Res. 2006;1102(1):163-174. doi:10.1016/j.brainres.2006.05.035
23. Aktan F, et al. Nitric Oxide. 2003;8(4):235-242. doi:10.1016/S1089-8603(03)00032-6
24. Hong S-W, et al. J Ethnopharmacol. 2011;134(3):1010-1013. doi:10.1016/j.jep.2011.02.002
25. Zhao TT, et al. BMC Complement Altern Med. 2015;15:323. doi:10.1186/s12906-015-0856-4
26. Choi HS, et al. Molecules. 2010;15(4):2814-2824. doi:10.3390/molecules15042814
27. Ge M, et al. Am J Chin Med. 2009;37(6):1059-1068. doi:10.1142/S0192415X09007491
28. Li L, et al. Cancer Biother. 1993;8(3):263-272. PMID: 7804367.
29. Müller C, Get al. Phytomedicine. 2012;19(5):395-401. doi:10.1016/j.phymed.2011.12.002
30. Chen JC, et al. Am J Chin Med. 2000;28(2):175-185. doi:10.1142/S0192415X00000222
31. Zhang Y, et al. J Nephrol. 2011;24(1):112-118. PMID: 20540031.
32. Hesse C, et al. Phytother Res. 2007;21(6):523-530. doi:10.1002/ptr.2086
33. Rujjanawate C, et al. Phytomedicine. 2004;11(5):431-435. doi:10.1016/j.phymed.2003.07.001
34. Chen L, et al. Oncotarget. 2016;7(21):31226-31242. doi:10.18632/oncotarget.8886
35. Chen L, et al. PLoS One. 2015;10(5):e0126807. doi:10.1371/journal.pone.0126807

Rosmarinus officinalis Leaf Extract

Rosemary Extract Common Name

Rosemary | Garden Rosemary

Top Benefits of Rosemary Extract

  • Supports healthy aging*
  • Supports exercise performance*
  • Supports muscle structure and function*
  • Supports healthy metabolic pathways*
  • Supports healthy weight*
  • Supports mitochondrial biogenesis, structure and function*
  • Supports antioxidant defenses*
  • Supports healthy cellular responses*
  • Supports brain function*
  • Supports cardiovascular function*
  • Supports liver function*
  • Supports healthy gut microbiota*  

What is Rosemary Extract?

Rosemary is a member of the mint family. It's common name derives from Latin and translates as “dew of the sea.” Rosemary was used as a spice and folk medicine by Egyptians, Greeks, and Latins cultures, thriving close to the coast especially in dryer areas throughout the Mediterranean. Rosmarinus officinalis contains a range of health-supporting polyphenols, including diterpenes (e.g., carnosol, carnosic acid, rosmarinic acid) and a triterpene called ursolic acid (sometimes referred to as urson, prunol, malol, or 3-beta-3-hydroxy-urs-12-ene-28-oic-acid). Triterpenes are produced by plants as part of their self-defense mechanism, so tend to concentrate in areas that come in direct contact with the external environment. This is the case with ursolic acid: It was originally identified in the epicuticular waxes of apple peels as early as 1920’s. While all apple peels contain some ursolic acid, the amount varies about 4-fold depending on variety. Fuji and Smith apple varieties are the best source, with the peel of medium-sized apple containing about 50 mg 1. Ursolic acid is also found in the peels of other fruits, and in kitchen spice herbs like basil, rosemary and thyme. Ursolic acid supports a variety of functional areas, many of which overlap with the response to exercise (e.g., support antioxidant defenses, enhance insulin sensitivity, stimulate mitochondrial biogenesis, upregulat sirtuins, activate AMPK). One of it’s more unique functional support areas is as a resistance training mimetic, supporting the development of new muscle fibers and muscle rejuvenation.

Neurohacker’s Rosemary Extract Sourcing

Rosemary Extract was selected because it’s standardized to contain 50% ursolic acid.

We opted for a rosemary extract for two reasons. Ursolic acid from rosemary extract is what’s been used in human clinical studies. Second, rosemary is complementary to ursolic acid, supporting antioxidant defenses, cellular detoxification and protective functions.

Studies of this extract suggest it supports muscle growth, rejuvenation, and performance. *

Rosemary Extract Dosing Principles and Rationale

Many polyphenol compounds have produce either a threshold response or follow hormetic dosing principles (see Neurohacker Dosing Principles). Because one of the main active compounds in rosemary extract is polyphenol ursolic acid, we expect the extract to have a hormetic range (i.e., a dosing range above which results could be poorer). Extrapolating from animal and human experiments, we expect this range to be from about 100 to 450 mg. We have selected to dose towards the lower end of the range, because we anticipate it having additive or synergistic effects with other polyphenol ingredients.*

Rosemary Extract Key Mechanisms

 Mitochondrial biogenesis

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) 2
  • Upregulates PGC-1β 3,4
  • Upregulates cAMP-PKA-CREB signaling pathway 5
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (mitochondrial transcription factor A [TFAM]) 2

Mitochondrial structure and function

  • Upregulates mitochondrial mass 2
  • Promotes ATP production 2
  • Upregulates signaling pathways: AMP-activated protein kinase (AMPK) 2,6–9
  • Supports complex IV (cytochrome C oxidase) performance 2
  • Supports mitochondrial β-oxidation – upregulates peroxisome proliferator-activated receptor alpha (PPARα) 10

Exercise performance (ergogenic effects)

  • Supports endurance performance 2,11,12
  • Supports muscle strength 2,11–13

Muscle Structure/Function

  • Upregulates muscle mass and the size of skeletal muscle fibers 8,11,12
  • Promotes the generation of new muscle fibers 14,15
  • Supports post-exercise recovery and skeletal muscle damage prevention 16
  • Upregulates muscle cell glucose uptake via AMPK activation 7–9
  • Upregulates insulin-like growth factor-1 (IGF-1) signaling in skeletal muscle 8,11
  • Downregulates lactic acid production 12


  • Supports healthy insulin sensitivity 10,17–23
  • Upregulates glucose regulatory enzymes 24
  • Supports citric acid cycle function via upregulation of citrate synthase 2
  • Upregulates insulin-like growth factor-1 (IGF-1) in the blood 13

Body weight 

  • Supports healthy body weight 6,11,18
  • Promotes lean mass 11,12
  • Promotes energy expenditure 6
  • Downregulates fat accumulation and blood/liver lipid levels 6,8,10,11,13,17,19
  • Promotes free fatty acid uptake and β-oxidation and prevents intracellular fat storage in skeletal muscle cells  6
  • Upregulates adiponectin concentrations 10
  • Promotes brown adipose tissue production 11

Antioxidant defenses

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) 25–30
  • Downregulates reactive oxygen species (ROS) production 2,26
  • Replenishes glutathione (GSH) levels 17,26

Cellular signaling 

  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) in the spinal cord; regulates peripheral cytokine signaling 31
  • Downregulates tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) levels 17,28

Brain function

  • Upregulates longevity biomarkers in the hypothalamus 4
  • Downregulattes ROS and oxidative stress in the brain  26
  • Supports spatial learning and memory (in rats) 25,29
  • Protects from neuronal degeneration 29
  • Downregulates oxidative stress in the hippocampus 29
  • Regulates cytokine signaling in the hippocampus 29

Cardiovascular function

  • Supports healthy cholesterol levels 10,28
  • Supports vascular health 32,33

Liver function

  • Promotes hepatic autophagy 10
  • Upregulates xenobiotic detoxification enzymes: NAD(P)H-quinone reductase and glutathione-S-transferase 34,35
  • Mediates hepatic protection 3

Gut microbiota

  • Regulates the composition of the gut microbiota 36
  • Regulates gut microbial metabolism 36

Healthy aging and longevity

  • Upregulates SIRT1 and SIRT6 3,4,33,37,38
  • Supports "mild" mitochondrial uncoupling: upregulates mitochondrial uncoupling protein 1 (UCP1) and UCP3 2,6,11
  • Upregulates the expression of Klotho 3,4
  • Downregulates advanced glycation end-products (AGEs) 17,39,40
  • Inhibits poly [ADP-ribose] polymerase 1 (PARP1, also known as NAD+ ADP-ribosyltransferase 1 or poly[ADP-ribose] synthase 1) 41


1. Frighetto RTS, et al. Food Chem. 2008;106(2):767-771. doi:10.1016/j.foodchem.2007.06.003
2. Chen J, et al. Food Funct. 2017;8(7):2425-2436. doi:10.1039/c7fo00127d
3. Gharibi S,et al. Curr Aging Sci. 2018;11(1):16-23. doi:10.2174/1874609810666170531103140
4. Bahrami SA, Bakhtiari N. Biomed Pharmacother. 2016;82:8-14. doi:10.1016/j.biopha.2016.04.047
5. Lewinska A, et al. Apoptosis. 2017;22(6):800-815. doi:10.1007/s10495-017-1353-7
6. Chu X, et al. Mol Nutr Food Res. 2015;59(8):1491-1503. doi:10.1002/mnfr.201400670
7. Naimi M, et al. Appl Physiol Nutr Metab. 2015;40(4):407-413. doi:10.1139/apnm-2014-0430
8. Vlavcheski F, et al. Molecules. 2017;22(10). doi:10.3390/molecules22101669
9. Naimi M, et al. Clin Exp Pharmacol Physiol. 2017;44(1):94-102. doi:10.1111/1440-1681.12674
10. Jia Y, et al. Mol Nutr Food Res. 2015;59(2):344-354. doi:10.1002/mnfr.201400399
11. Kunkel SD, et al. PLoS One. 2012;7(6):e39332. doi:10.1371/journal.pone.0039332
12. Jeong J-W, et al. J Med Food. 2015;18(12):1380-1386. doi:10.1089/jmf.2014.3401
13. Bang HS, et al. Korean J Physiol Pharmacol. 2014;18(5):441-446. doi:10.4196/kjpp.2014.18.5.441
14. Bakhtiari N. JSRB. 2017;3(1):1-5. doi:10.15436/2471-0598.16.015
15. Bakhtiari N, et al. Med Hypotheses. 2015;85(1):1-6. doi:10.1016/j.mehy.2015.02.014
16. Bang HS, et al. Korean J Physiol Pharmacol. 2017;21(6):651-656. doi:10.4196/kjpp.2017.21.6.651
17. Zhao Y, et al. J Agric Food Chem. 2015;63(19):4843-4852. doi:10.1021/acs.jafc.5b01246
18. Ramírez-Rodríguez AM, et al. J Med Food. 2017;20(9):882-886. doi:10.1089/jmf.2017.0003
19. Jayaprakasam B, et al. J Agric Food Chem. 2006;54(1):243-248. doi:10.1021/jf0520342
20. Sundaresan A, et al. J Physiol Biochem. 2016;72(2):345-352. doi:10.1007/s13105-016-0484-6
21. Zhang W, et al. Biochim Biophys Acta. 2006;1760(10):1505-1512. doi:10.1016/j.bbagen.2006.05.009
22. Jung SH, et al. Biochem J. 2007;403(2):243-250. doi:10.1042/BJ20061123
23. Ma P, et al. Am J Transl Res. 2016;8(9):3791-3801. PMID: 27725859.
24. Jang S-M, et al. Metabolism. 2010;59(4):512-519. doi:10.1016/j.metabol.2009.07.040
25. Rasoolijazi H, et al. Med J Islam Repub Iran. 2015;29:187. PMID: 26034740.
26. de Almeida Gonçalves G, et al. Food Funct. 2018;9(4):2328-2340. doi:10.1039/c7fo01928a
27. Wang H-L, et al. J Food Sci. 2017;82(4):1006-1011. doi:10.1111/1750-3841.13656
28. Samarghandian S, et al. Cardiovasc Hematol Disord Drug Targets. 2017;17(1):11-17. doi:10.2174/1871529X16666161229154910
29. Song H, et al. Neurosci Lett. 2016;622:95-101. doi:10.1016/j.neulet.2016.04.048
30. Nazem F, et al. Can J Diabetes. 2015;39(3):229-234. doi:10.1016/j.jcjd.2014.11.003
31. Zhang Y, et al. Mol Med Rep. 2016;13(6):5309-5316. doi:10.3892/mmr.2016.5172
32. Ullevig SL, et al. Atherosclerosis. 2011;219(2):409-416. doi:10.1016/j.atherosclerosis.2011.06.013
33. Jiang Q, et al. Mol Cell Biochem. 2016;420(1-2):171-184. doi:10.1007/s11010-016-2787-x
34. Singletary KW. Cancer Lett. 1996;100(1-2):139-144.
35. Singletary KW, Rokusek JT. Plant Foods Hum Nutr. 1997;50(1):47-53. PMID: 9198114.
36. Romo-Vaquero M, et al. PLoS One. 2014;9(4):e94687. doi:10.1371/journal.pone.0094687
37. Bakhtiari N, et al. Arch Biochem Biophys. 2018;650:39-48. doi:10.1016/
38. Gao L, et al. Mol Nutr Food Res. 2016;60(9):1902-1911. doi:10.1002/mnfr.201500878
39. Ou J, et al. Food Chem. 2017;221:1057-1061. doi:10.1016/j.foodchem.2016.11.056
40. Wang Z-H, et al. Eur J Pharmacol. 2010;628(1-3):255-260. doi:10.1016/j.ejphar.2009.11.019
41. Su C, et al. Sci Rep. 2017;7(1):16704. doi:10.1038/s41598-017-16795-3

Sirtmax® Kaempferia parviflora

Kaempferia parviflora Common Name

Black Ginger | Black Turmeric | Krachai Dam

Top Benefits of Kaempferia parviflora

  • Supports mitochondrial biogenesis, structure and function*
  • Supports muscle strength and endurance*
  • Supports metabolism & healthy blood sugar levels*
  • Supports healthy weight*
  • Supports antioxidant defenses*
  • Supports healthy aging*
  • Support cardiovascular function*
  • Supports brain function*
  • Supports reproductive health*

What is Kaempferia parviflora?

Kaempferia parviflora is found in the upper Northeastern regions of Thailand. Root extracts have a long history of use and a reputation for being a health tonic and energy enhancer (i.e., Thai ginseng). The novel active constituents are a special type of polyphenol called polymethoxyflavonoids. Sirtmax® Kaempferia parviflora root extract is standardized for polymethoxyflavonoid content.

Neurohacker’s Kaempferia parviflora Sourcing

Sirtmax® has been used in animal and human research studies.

Created by Tokiwa Phytochemicals, a leader in standardized Kaempferia parviflora supplementation. 

Highest concentration, full-spectrum root extract, with double standardization for 5,7-dimethoxyflavone (≥ 4%) along with five Kaempferia parviflora polymethoxyflavonoids (≥ 15%).

Grown in Thailand & Laos.

Sirtmax® is a registered trademark of Tokiwa Phytochemical Co., Ltd.

Kaempferia parviflora Dosing Principles and Rationale

We consider Kaempferia parviflora to be in the adaptogenic herb category; following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is within the studied range in humans.*

Kaempferia parviflora Key Mechanisms

Mitochondrial biogenesis

  • Upregulates mitochondrial number 1
  • Upregulates Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1alpha (PGC-1α) 1–3
  • Upregulates transcription factors for mitochondrial biogenesis (estrogen-related receptor-α [ERRα], nuclear respiratory factor-1 [Nrf-1], and mitochondrial transcription factor A [TFAM]) through activation of PGC-1α 2

Mitochondrial function

  • Upregulates AMP-Activated Protein Kinase (AMPK) 2,3
  • Promotes ATP production (output of mitochondrial oxidative phosphorylation) 3
  • Promotes mitochondrial β-oxidation (fatty acid metabolism) – upregulates peroxisome proliferator-activated receptor gamma (PPARγ) and delta (PPARδ)  2,4

Exercise performance (ergogenic effects)

  • Supports endurance performance 1,2,5,6
  • Supports post-exercise recovery 1
  • Supports muscle strength 5,6
  • Supports muscle metabolism (upregulates glycogen synthase and increases glycogen content) 1


  • Supports healthy insulin sensitivity 7
  • Promotes cell metabolism (muscle cell precursors [myoblasts] in vitro): promotes glucose uptake and the downregulation of lactic acid production; promotes the expression of glucose transporter 4 (GLUT4) and monocarboxylate transporter 1 (MCT1) 3

Body weight

  • Downregulates fat accumulation and blood/liver lipid levels 4,7,8
  • Promotes differentiation of brown adipocyte cells 4
  • Upregulates uncoupling protein 1 (UCP1) in brown adipose tissue - supports thermogenesis of brown adipose tissue  4,7,8
  • Promotes whole-body energy expenditure through activation of brown adipose tissue 7,9
  • Promotes lean body mass 2

Antioxidant defenses

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) 5

Healthy aging and longevity 

  • Upregulates SIRT-1 2,10
  • Downregulates the production of advanced glycation end-products (AGEs) 10

Cardiovascular function

  • Promotes healthy nitric oxide (NO) signaling pathway function 11–14
  • Upregulates endothelial NO synthase (eNOS) 11
  • Inhibits phosphodiesterase 5 (PDE-5), the enzyme that cleaves the NO mediator cyclic guanosine monophosphate (cGMP) to 5’GMP 15
  • Positive effect on NO signaling pathway in cardiac tissue via upregulated cGMP levels 12
  • Promotes vasodilation via the NO signaling pathway 13,14

Brain function

  • Acetylcholinesterase inhibition (by the methoxyflavonoid 5,7-dimethoxyflavone [DMF]) 16
  • Neuroprotection from glutamate excitotoxicity (by the methoxyflavonoid 5‐Hydroxy‐3,7,3′,4′‐tetramethoxyflavone)17

Reproductive function

  • Inhibits phosphodiesterase-5 (PDE-5)15 and supports relaxation of the corpus cavernosum 18


1. Toda K, et al. Heliyon. 2016;2(5):e00115. doi:10.1016/j.heliyon.2016.e00115
2. Kim M-B, et al. J Med Food. 2018;21(1):30-38. doi:10.1089/jmf.2017.3989
3. Toda K, et al. J Nat Med. 2016;70(2):163-172. doi:10.1007/s11418-015-0948-y
4. Kobayashi H, et al. J Nat Med. 2016;70(1):54-61. doi:10.1007/s11418-015-0936-2
5. Wattanathorn J, et al. Evid Based Complement Alternat Med. 2012;2012:732816. doi:10.1155/2012/732816
6. Promthep K, et al. Med Sci Monit Basic Res. 2015;21:100-108. doi:10.12659/MSMBR.894301
7. Shimada T, et al. Fitoterapia. 2011;82(8):1272-1278. doi:10.1016/j.fitote.2011.08.018
8. Yoshino S, et al. Food Sci Nutr. 2014;2(6):634-637. doi:10.1002/fsn3.144
9. Matsushita M, et al. J Nutr Sci Vitaminol . 2015;61(1):79-83. doi:10.3177/jnsv.61.79
10. Nakata A, et al. Nat Prod Commun. 2014;9(9):1291-1294. PMID: 25918795.
11. Wattanapitayakul SK, et al. J Ethnopharmacol. 2007;110(3):559-562. doi:10.1016/j.jep.2006.09.037
12. Weerateerangkul P, et al. J Cardiovasc Pharmacol. 2012;60(3):299-309. doi:10.1097/FJC.0b013e3182609a52
13. Tep-Areenan P, et al. Phytother Res. 2010;24(10):1520-1525. doi:10.1002/ptr.3164
14. Tep-Areenan P, et al. Asian Biomed. 2010;4(1):103-111. doi:10.2478/abm-2010-0012
15. Temkitthawon P, et al. J Ethnopharmacol. 2011;137(3):1437-1441. doi:10.1016/j.jep.2011.08.025
16. Sawasdee P, et al. Phytother Res. 2009;23(12):1792-1794. doi:10.1002/ptr.2858
17. Moon H-I, et al. Phytother Res. 2011;25(8):1215-1217. doi:10.1002/ptr.3390
18. Jansakul C, et al. Eur J Pharmacol. 2012;691(1-3):235-244. doi:10.1016/j.ejphar.2012.07.019

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.

American Ginseng (Cereboost™)


American Ginseng


  • Enhances working memory and alertness*
  • Promotes calmness*
  • Supports cognitive function and performance*


Panax quinquefolius is commonly called American ginseng, because it is native to forested regions in North America. It is the same genus as Asian ginseng (Panax ginseng) and prized for many of the same reasons. Both American and Asian ginseng contain similar active constituents called ginsenosides. The ginsenosides are thought to be responsible for many of the adaptogenic (i.e., stress and fatigue support)  and health-promoting properties associated with ginseng.[1] While there are many different ginsenosides, the most well characterized include Rb1, Rb2, Rg1, Rc, Rd, and Re. Cereboost™ is a clinically studied and standardized American ginseng root extract. In humans studies, Cereboost™ has enhanced working memory and alertness, while promoting calmness.


Cereboost™ has been used in human clinical studies, where it has enhanced alertness, working memory, and calmness.

Cereboost™ was granted the NutrAward 2010 for the Best New Ingredient of the year.

Cereboost™ is produced by Naturex, an innovator in nutraceutical products in Europe and the United States.

Cereboost™ is standardized for total ginsenoside content (10-12%), and several specific ginsenosides, including Rb1 (4-7%), Rb2 (0.2-1.5%), Rg1 (0.1-0.4%), Rc (0.5-3.5%), Rd (0.9-3.0%), and Re (0.4-3.5%). 

Cereboost™ is non-GMO, gluten-free, and vegan.

Cereboost™is a trademark of Naturex.


We consider Panax quinquefolius to be in the adaptogenic herb category; following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is consistent with the studied amount in the human clinical studies for supporting working memory, alertness, and calmness.*


Cognitive function

  • Supports attention [2]
  • Supports working memory [2,3]
  • Supports learning and memory [4–7]


  • Promotes calmness [2]
  • Supports mood [1,8,9]
  • Adaptogenic actions (i.e., stress resilience and anti-fatigue) [5]
  • Downregulates stress hormone levels / HPA-axis activation [1,8]

Brain function

  • Modulates cholinergic neurotransmission [1,4,5,10,11]
  • Downregulates acetylcholinesterase (AChE) activity [4]
  • Upregulates choline acetyltransferase (ChAT) expression [4]
  • Upregulates acetylcholine levels [4]
  • Modulates dopaminergic neurotransmission [12–15]
  • Modulates GABAergic neurotransmission [1,8]
  • Neuroprotective effects [1,4,5,8,10]
  • Regulates neural cytokine signaling [1,8,10,16]
  • Protects against glutamate neurotoxicity [10,17]
  • Supports neurite outgrowth, dendritic spine density, and synaptic plasticity [1,5–7]
  • Upregulates BDNF signaling [1,7,10,18]
  • Supports neurogenesis [1,10,18]

Antioxidant defenses

  • Upregulates antioxidant enzymes in the brain (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [8]
  • Replenishes glutathione (GSH) levels [8]
  • Downregulates lipid peroxidation [8]

Cardiometabolic effects

  • Supports healthy cardiometabolic parameters [19–21]
  • Supports healthy blood glucose levels [22–24]
  • Supports healthy insulin sensitivity [25]
  • Supports fat metabolism [19]
  • Supports mitochondrial enzyme complex activities [8]

 Gut microbiota

  • Regulates gut cytokine signaling [26–28]
  • Modulates gut microbiota composition [27,28]

Ergogenic effects

  • Supports high-intensity endurance performance [29,30]
  • Protects from exercise-induced muscle damage [29–31]


[1]H.J. Kim, P. Kim, C.Y. Shin, J. Ginseng Res. 37 (2013) 8–29.
[2]A. Scholey, A. Ossoukhova, L. Owen, A. Ibarra, A. Pipingas, K. He, M. Roller, C. Stough, Psychopharmacology 212 (2010) 345–356.
[3]A. Ossoukhova, L. Owen, K. Savage, M. Meyer, A. Ibarra, M. Roller, A. Pipingas, K. Wesnes, A. Scholey, Hum. Psychopharmacol. 30 (2015) 108–122.
[4]K. Shin, H. Guo, Y. Cha, Y.-H. Ban, D.W. Seo, Y. Choi, T.-S. Kim, S.-P. Lee, J.-C. Kim, E.-K. Choi, J.-M. Yon, Y.-B. Kim, Regul. Toxicol. Pharmacol. 78 (2016) 53–58.
[5]Y. Cheng, L.-H. Shen, J.-T. Zhang, Acta Pharmacol. Sin. 26 (2005) 143–149.
[6]I. Mook-Jung, H.S. Hong, J.H. Boo, K.H. Lee, S.H. Yun, M.Y. Cheong, I. Joo, K. Huh, M.W. Jung, J. Neurosci. Res. 63 (2001) 509–515.
[7]H. Zhao, Q. Li, X. Pei, Z. Zhang, R. Yang, J. Wang, Y. Li, Behav. Brain Res. 201 (2009) 311–317.
[8]P. Chanana, A. Kumar, Front. Neurosci. 10 (2016) 84.
[9]M. Chatterjee, P. Verma, G. Palit, Indian J. Exp. Biol. 48 (2010) 306–313.
[10]K. Radad, R. Moldzio, W.-D. Rausch, CNS Neurosci. Ther. 17 (2011) 761–768.
[11]C.G. Benishin, Neurochem. Int. 21 (1992) 1–5.
[12]G.-L. Wang, Y.-P. Wang, J.-Y. Zheng, L.-X. Zhang, Brain Res. 1699 (2018) 44–53.
[13]S.H. Lee, J. Hur, E.H. Lee, S.Y. Kim, Biomol. Ther. 20 (2012) 482–486.
[14]H.S. Kim, Y.T. Hong, K.W. Oh, Y.H. Seong, H.M. Rheu, D.H. Cho, S. Oh, W.K. Park, C.G. Jang, Gen. Pharmacol. 30 (1998) 783–789.
[15]H.S. Kim, K.S. Kim, K.W. Oh, Pharmacol. Biochem. Behav. 63 (1999) 407–412.
[16]C.F. Wu, X.L. Bi, J.Y. Yang, J.Y. Zhan, Y.X. Dong, J.H. Wang, J.M. Wang, R. Zhang, X. Li, Int. Immunopharmacol. 7 (2007) 313–320.
[17]Y.C. Kim, S.R. Kim, G.J. Markelonis, T.H. Oh, J. Neurosci. Res. 53 (1998) 426–432.
[18]L.-H. Shen, J.-T. Zhang, Neurol. Res. 26 (2004) 422–428.
[19]R.K. Singh, E. Lui, D. Wright, A. Taylor, M. Bakovic, Can. J. Physiol. Pharmacol. 95 (2017) 1046–1057.
[20]V. Vuksan, Z.Z. Xu, E. Jovanovski, A.L. Jenkins, U. Beljan-Zdravkovic, J.L. Sievenpiper, P. Mark Stavro, A. Zurbau, L. Duvnjak, M.Z.C. Li, Eur. J. Nutr. (2018).
[21]I. Mucalo, E. Jovanovski, D. Rahelić, V. Božikov, Z. Romić, V. Vuksan, J. Ethnopharmacol. 150 (2013) 148–153.
[22]V. Vuksan, M.P. Stavro, J.L. Sievenpiper, V.Y. Koo, E. Wong, U. Beljan-Zdravkovic, T. Francis, A.L. Jenkins, L.A. Leiter, R.G. Josse, Z. Xu, J. Am. Coll. Nutr. 19 (2000) 738–744.
[23]V. Vuksan, J.L. Sievenpiper, V.Y. Koo, T. Francis, U. Beljan-Zdravkovic, Z. Xu, E. Vidgen, Arch. Intern. Med. 160 (2000) 1009–1013.
[24]V. Vuksan, J.L. Sievenpiper, J. Wong, Z. Xu, U. Beljan-Zdravkovic, J.T. Arnason, V. Assinewe, M.P. Stavro, A.L. Jenkins, L.A. Leiter, T. Francis, Am. J. Clin. Nutr. 73 (2001) 753–758.
[25]L.R. De Souza, A.L. Jenkins, E. Jovanovski, D. Rahelić, V. Vuksan, J. Ethnopharmacol. 159 (2015) 55–61.
[26]C.-Z. Wang, H. Yao, C.-F. Zhang, L. Chen, J.-Y. Wan, W.-H. Huang, J. Zeng, Q.-H. Zhang, Z. Liu, J. Yuan, Y. Bi, C. Sava-Segal, W. Du, M. Xu, C.-S. Yuan, Int. Immunopharmacol. 64 (2018) 246–251.
[27]C.-Z. Wang, C. Yu, X.-D. Wen, L. Chen, C.-F. Zhang, T. Calway, Y. Qiu, Y. Wang, Z. Zhang, S. Anderson, Y. Wang, W. Jia, C.-S. Yuan, Cancer Prev. Res. 9 (2016) 803–811.
[28]C.-Z. Wang, W.-H. Huang, C.-F. Zhang, J.-Y. Wan, Y. Wang, C. Yu, S. Williams, T.-C. He, W. Du, M.W. Musch, E.B. Chang, C.-S. Yuan, Clin. Transl. Oncol. 20 (2018) 302–312.
[29]J. Wu, S. Saovieng, I.-S. Cheng, T. Liu, S. Hong, C.-Y. Lin, I.-C. Su, C.-Y. Huang, C.-H. Kuo, J. Ginseng Res. (2018).
[30]C.-W. Hou, S.-D. Lee, C.-L. Kao, I.-S. Cheng, Y.-N. Lin, S.-J. Chuang, C.-Y. Chen, J.L. Ivy, C.-Y. Huang, C.-H. Kuo, PLoS One 10 (2015) e0116387.
[31]M. Estaki, E.G. Noble, Appl. Physiol. Nutr. Metab. 40 (2015) 116–121.

Cinnulin PF® Cinnamomum burmannii Bark Extract

Cinnamomum burmannii Bark Extract Common Name

Cinnamon | Indonesian Cassia

Top Benefits of Cinnamon Extract

  • Supports healthy aging*
  • Supports metabolic health*
  • Supports healthy weight*
  • Supports antioxidant defenses*
  • Supports cellular responses*
  • Supports healthy gut microbiota*
  • Supports healthy blood sugar levels*
  • Supports women’s hormone balance*
  • Supports healthy blood pressure*

What is Cinnamon Extract?

Cinnamon is one of the world's oldest spices. Along with pepper and ginger, it was a big part of the spice trade between Asia and Europe. Cinnamon comes from the inner bark of several different tree species from the genus Cinnamomum. The various species of the cinnamon tree are native to India, Sri Lanka, Indonesia, and Burma. While cinnamon species are similar, they don’t produce identical extracts. We opted for Cinnulin PF®—a standardized Cinnamomum burmannii bark extract—because (1) it has undergone human clinical trials, and (2) is monitored to contain not more than 0.7% coumarin, a compound that should only be consumed in low amounts. 

Neurohacker’s Cinnamon Extract Sourcing

Cinnulin PF® is a patented 20:1 water-soluble cinnamon extract from the bark of the Cinnamomum burmannii tree.

Clinically tested and shown to support normal blood sugar levels, insulin signaling pathways, healthy blood pressure, healthy body composition, and women’s hormone balance. *

Standardized to contain not less than 3% doubly linked type-A polymers and not more than 0.7% coumarin.

Produced using a proprietary extraction process called Controlled Polymer Purification Technology (CPPT). This process allows the important, biologically active compounds to be isolated and removes most of the potential toxins from the whole cinnamon.

Non-GMO, Vegan, Certified Kosher

Cinnamon Extract Dosing Principles and Rationale

A dose of 500 mg per day of Cinnulin PF® has been used in clinical trials. This dose, as a sole nutritional intervention, has supported healthy responses in a number of functional health areas. Since we are using the cinnamon extract as part of a stack with other ingredients, we anticipate there being some degree of additive responses. We also do not think cinnamon is a more is better ingredient. Like many plants, cinnamon contains compounds that appear to follow hormetic dosing principles (see Neurohacker Dosing Principles). When this is the case, especially if we intend a formulation to be used long-term, we prefer to be conservative with our dosing. Because of these intersecting principles, we decided to include half the studied dose of Cinnulin PF®.

Cinnamon Extract Key Mechanisms


  • Supports healthy insulin sensitivity (1–8)
  • Upregulates the insulin signaling pathway  (1, 3, 9)
  • Upregulates the glucose transporter GLUT-4 (10–12)
  • Downregulates fat accumulation and blood/liver lipid levels (1, 4, 7–9, 11, 13, 14)
  • Upregulates lean mass (15)
  • Upregulates adiponectin levels (1)

Signaling pathways

  • Upregulates AMP-activated protein kinase (AMPK) signaling (4, 10, 16)
  • Upregulates liver kinase B1 (LKB1)  (10)
  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) and delta (PPARδ); modulates PPAR gamma (PPARγ) (4, 11, 17)

Antioxidant defenses

  • Downregulates the production of reactive oxygen species and oxidative stress (13, 18, 19)
  • Upregulates antioxidant enzymes (superoxide dismutase [SOD]) (19)
  • Replenishes glutathione (GSH) levels (19)

Cellular signaling

  • Downregulates the expression of proinflammatory molecules (tumor necrosis factor alpha [TNFα], nuclear factor kappa B [NF-κB], interleukin 1β [IL-1β], IL-6) (3, 20, 21)
  • Protects mitochondrial structure and function (22, 23)

Gut microbiota

  • Regulates the composition of the gut microbiota (24, 25)
  • Supports gut barrier function (24)

Healthy aging and longevity 

  • Neuroprotective effects (26)
  • Supports liver function (11)
  • Upregulates heat-shock protein 70 (HSP70) (27)
  • Upregulates SIRT1, SIRT2, and SIRT3 (20, 21)
  • Upregulates uncoupling protein 1 (UCP1) (12, 14)
  • Extends lifespan (Drosophila melanogaster) (27)


1. B. Qin, M. M. Polansky, R. A. Anderson, Horm. Metab. Res. 42, 187–193 (2010).
2. J. G. Wang et al., Fertil. Steril. 88, 240–243 (2007).
3. B. Qin, H. D. Dawson, N. W. Schoene, M. M. Polansky, R. A. Anderson, Nutrition. 28, 1172–1179 (2012).
4. B. Huang, H. D. Yuan, D. Y. Kim, H. Y. Quan, S. H. Chung, J. Agric. Food Chem. 59, 3666–3673 (2011).
5. M. Hajimonfarednejad et al., Phytother. Res. 32, 276–283 (2018).
6. R. Zare, A. Nadjarzadeh, M. M. Zarshenas, M. Shams, M. Heydari, Clin. Nutr. (2018), doi:10.1016/j.clnu.2018.03.003.
7. A. Borzoei, M. Rafraf, M. Asghari-Jafarabadi, Asia Pac. J. Clin. Nutr. 27, 556–563 (2018).
8. R. A. Anderson et al., Afr. J. Tradit. Complement. Altern. Med. 6, 332–336 (2016).
9. B. Qin, M. M. Polansky, Y. Sato, K. Adeli, R. A. Anderson, J. Nutr. Biochem. 20, 901–908 (2009).
10. Y. Shen et al., PLoS One. 9, e87894 (2014).
11. X. Sheng, Y. Zhang, Z. Gong, C. Huang, Y. Q. Zang, PPAR Res. 2008, 581348 (2008).
12. Y. Shen et al., Biosci. Biotechnol. Biochem. 74, 2418–2425 (2010).
13. A. Borzoei et al., Afr. J. Tradit. Complement. Altern. Med. 8, 128–133 (2018).
14. Y. Tamura, Y. Iwasaki, M. Narukawa, T. Watanabe, J. Nutr. Sci. Vitaminol. . 58, 9–13 (2012).
15. T. N. Ziegenfuss, J. E. Hofheins, R. W. Mendel, J. Landis, R. A. Anderson, J. Int. Soc. Sports Nutr. 3, 45–53 (2006).
16. C. Kopp et al., Int. J. Mol. Sci. 15, 2906–2915 (2014).
17. J.-E. Li et al., Am. J. Chin. Med. 43, 879–892 (2015).
18. A.-M. Roussel, I. Hininger, R. Benaraba, T. N. Ziegenfuss, R. A. Anderson, J. Am. Coll. Nutr. 28, 16–21 (2009).
19. A. S. Sahib, J Intercult Ethnopharmacol. 5, 108–113 (2016).
20. B. Qin, K. S. Panickar, R. A. Anderson, Nutrition. 30, 210–217 (2014).
21. B. Qin, K. S. Panickar, R. A. Anderson, Life Sci. 102, 72–79 (2014).
22. K. Couturier et al., J. Nutr. Biochem. 28, 183–190 (2016).
23. K. S. Panickar, M. M. Polansky, R. A. Anderson, Exp. Neurol. 216, 420–427 (2009).
24. M. Van Hul et al., Am. J. Physiol. Endocrinol. Metab. 314, E334–E352 (2018).
25. Q.-Y. Lu et al., J. Food Sci. 82, 1807–1813 (2017).
26. D. W. Peterson et al., J. Alzheimers. Dis. 17, 585–597 (2009).
27. S. E. Schriner et al., Exp. Gerontol. 60, 220–230 (2014).

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.

Rhodiola rosea Root

Scientific Name:
Rhodiola rosea

Rhodiola rosea is a flowering plant with nootropic and adaptogenic effects. Its biologically active compounds can improve memory and focus.

Scientific Name:
Rhodiola rosea

      • Rosavins and salidrosides are its main biologically active compounds[1]
      • Inhibits monoamine oxidase[2]
      • Increases the levels of dopamine, noradrenalin, adrenalin, serotonin, and melatonin[2]
      • Regulates the opioid β-endorphin – improves mood[3]
      • Decreases fatigue, improves motivation and concentration[3]
      • Promotes longevity – neuroprotective against toxins and oxidative stress; increases the production of antioxidant enzymes[4]
      • Modulates neuropeptide Y activity, increasing HSP72 levels – anti-stress effects[5]
      • Enhances neurogenesis and neuronal regeneration – memory enhancement[6 7]

[1] Panossian A, et al (2010). Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 17(7):481-93. doi: 10.1016/j.phymed.2010.02.002
[2] van Diermen D, et al (2009). Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol, 122(2):397-401. doi: 10.1016/j.jep.2009.01.007
[3] Kelly GS (2001). Rhodiola rosea: a possible plant adaptogen. Altern Med Rev, 6(3):293-302. PMID: 11410073
[4] Qu ZQ, et al (2009). Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: implication of anti-oxidative and neuroprotective effects. Biomed Environ Sci, 22(4):318-26. doi: 10.1016/S0895-3988(09)60062-3
[5] Panossian A, et al (2012). Adaptogens stimulate neuropeptide y and hsp72 expression and release in neuroglia cells. Front Neurosci, 6:6. doi: 10.3389/fnins.2012.00006
[6] Qu ZQ, et al (2012). Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One, 7(1):e29641. doi: 10.1371/journal.pone.0029641
[7] Sheng QS, et al (2013). Salidroside promotes peripheral nerve regeneration following crush injury to the sciatic nerve in rats. Neuroreport, 24(5):217-23. doi: 10.1097/WNR.0b013e32835eb867

Lion’s Mane

Scientific Name:
Hericium erinaceus

Lion’s Mane is a mushroom with neuroprotective and nootropic effects. Lion’s Mane can improve memory and reasoning.

Scientific Name:
Hericium erinaceus


      • Increases NGF levels in the brain – enhanced neuronal growth, regeneration and synaptic plasticity[1]
      • Improves myelination – enhanced neuronal communication and nerve regeneration[2]
      • Increases long-term synaptic potentiation – improved memory[3,4]
      • Decreases glutamatergic transmission – decreased neuronal excitability and excitotoxicity[3,4]
      • Protects neurons from endoplasmic reticulum stress[3,4]
      • Anxiolytic[5]
      • Anti-inflammatory effects[6]

[1] Lai PL, et al (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int J Med Mushrooms, 15(6):539-54. doi: 10.1615/IntJMedMushr.v15.i6.30
[2] Kolotushkina EV, et al (2003). The influence of Hericium erinaceus extract on myelination process in vitro. Fiziol Zh, 49(1):38-45. PMID: 12675022
[3] Phan CW, et al (2015). Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol, 35(3):355-68. doi: 10.3109/07388551.2014.887649
[4] Sabaratnam V, et al (2013). Neuronal health – can culinary and medicinal mushrooms help? J Tradit Complement Med, 3(1):62-8. doi: 10.4103/2225-4110.106549
[5] Nagano M, et al (2010). Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed Res, 31(4):231-7. doi: 10.2220/biomedres.31.231
[6] Geng Y, et al (2014). Anti-inflammatory activity of mycelial extracts from medicinal mushrooms. Int J Med Mushrooms, 16(4):319-25. doi: 10.1615/IntJMedMushrooms.v16.i4.20

Artichoke Stem and Leaf Extract

Scientific Name:
Cynara cardunculus

Artichoke (Cynara cardunculus) is a plant that contains cynarin, having nootropic effects. Cynarin can significantly improve memory and executive function.

Scientific Name:
Cynara cardunculus


      • Artichoke extract contains polyphenols with antioxidant action and cynarin, its main biologically active compound[1]
      • Increases long-term synaptic potentiation – improved memory[2]
      • Enhances working memory, short-term memory, memory consolidation, and memory recall[2]
      • Synergistic with forskolin in increasing cAMP levels – inhibits phosphodiesterase-4[3]
      • Enhances logic, mathematical, and practical reasoning[4]

[1] Li H, et al (2004). Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. J Pharmacol Exp Ther, 310(3):926-32. doi: 10.1124/jpet.104.066639
[2] Barad M, et al (1998). Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci U S A, 95(25):15020-5. PMID: 9844008
[3] Yu MC, et al (2010). Luteolin, a non-selective competitive inhibitor of phosphodiesterases 1-5, displaced [3H]-rolipram from high-affinity rolipram binding sites and reversed xylazine/ketamine-induced anesthesia. Eur J Pharmacol, 627(1-3):269-75. doi: 10.1016/j.ejphar.2009.10.031
[4] Reneerkens OA, et al (2009). Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl), 202(1-3):419-43. doi: 10.1007/s00213-008-1273-x


Scientific Name:
Gynostemma pentaphyllum

Gynostemma is an herb with neuroprotective and adaptogenic effects. Gynostemma can improve memory

Scientific Name:
Gynostemma pentaphyllum


      • Increases the levels of superoxide dismutase (SOD), glutathione and other anti-oxidants – neuroprotective effect[1]
      • Maintains optimal homeostasis and improves resistance to stress – adaptogenic effect[2]
      • Improves memory as a consequence of antioxidant mechanisms[3]
      • Anti-inflammatory effects through NF-kB inhibition
      • Anti-aging effect

[1] Zhang GL, et al (2011). Gypenosides improve cognitive impairment induced by chronic cerebral hypoperfusion in rats by suppressing oxidative stress and astrocytic activation. Behav Pharmacol, 22(7):633-44. doi: 10.1097/FBP.0b013e32834afef9
[2] Zhao TT, et al (2015). Ameliorating effects of gypenosides on chronic stress-induced anxiety disorders in mice. BMC Complement Altern Med, 15:323. doi: 10.1186/s12906-015-0856-4
[3] Schild L, et al (2009). Protection of hippocampal slices against hypoxia/hypoglycemia injury by a Gynostemma pentaphyllum extract. Phytomedicine, 16(8):734-43. doi: 10.1016/j.phymed.2009.03.006
[4] Aktan F, et al (2003). Gypenosides derived from Gynostemma pentaphyllum suppress NO synthesis in murine macrophages by inhibiting iNOS enzymatic activity and attenuating NF-kappaB-mediated iNOS protein expression. Nitric Oxide, 8(4):235-42. doi: 10.1016/S1089-8603(03)00032-6

Ginkgo biloba Leaf Extract

Scientific Name:
Ginkgo biloba

Ginkgo biloba is a plant with neuroprotective, nootropic and adaptogenic effects. Ginkgo biloba can delay aging, improving memory and attention.

Scientific Name:
Ginkgo biloba


      • Contains flavonoid glycosides such as quercetin, and terpene lactones such as ginkgolides and bilobalides – main bioactive substances[1]
      • Increases dopamine, acetylcholine and noradrenaline levels[2,3]
      • Modulates histaminergic neurotransmission improving learning and memory[4]
      • Increases BDNF levels and promotes neurogenesis and neuronal survival[5]
      • Improves cerebral blood flow by inhibiting the platelet activating factor (PAF) receptor[6]
      • Delays cognitive decline and improves short term memory and free recall[7]
      • Reduces stress and anxiety and decreases corticosterone levels – adaptogenic effect[8]
      • Has antioxidant and anti-inflammatory effects and preserves mitochondrial function – anti-aging effect[9]

[1] van Beek TA (2002). Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A, 16;967(1):21-55. doi: 10.1016/S0021-9673(02)00172-3
[2] Ponto LL, Schultz SK (2003). Ginkgo biloba extract: review of CNS effects. Ann Clin Psychiatry, 15(2):109-19. doi: 10.1023/A:1024688326023
[3] Ahlemeyer B, Krieglstein J (2003). Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci, 60(9):1779-92. doi: 10.1007/s00018-003-3080-1
[4] Yamamoto Y, et al (2007). Ginkgo biloba extract improves spatial memory in rats mainly but not exclusively via a histaminergic mechanism. Brain Res, 1129(1):161-5. doi: 10.1016/j.brainres.2006.08.102
[5] Tchantchou F, et al (2009). Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis. 2009;18(4):787-98. doi: 10.3233/JAD-2009-1189
[6] Liao HJ, et al (2011). Two new ginkgolides from the leaves of Ginkgo biloba. Planta Med, 77(16):1818-21. doi: 10.1055/s-0030-1271153
[7] Kanowski S, et al (1996). Proof of efficacy of the ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Pharmacopsychiatry, 29(2):47-56. doi: 10.1016/S0944-7113(97)80021-9
[8] Rapin JR, et al (1994). Demonstration of the “anti-stress” activity of an extract of Ginkgo biloba (EGb 761) using a discrimination learning task. Gen Pharmacol, 25(5):1009-16. doi: 10.1016/0306-3623(94)90111-2
[9] Eckert A, et al (2003). Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry, 36 Suppl 1:S15-23. doi: 10.1055/s-2003-40449

Bacopa monnieri Leaf Extract

Scientific Name:
Bacopa monnieri

Studies indicate that Bacopa monnieri has neuroprotective, nootropic and adaptogenic effects. Research shows that it can improve memory formation and recall.

Scientific Name:
Bacopa monnieri


  • Bacosides are the active ingredients in Bacopa monnieri[1]
  • Inhibits acetylcholinesterase, activates choline acetyltransferase – increased levels of acetylcholine[1]
  • Increases neurite branching and proliferation – improves synaptic communication and memory[1]
  • Modulates the dopaminergic and serotonergic systems – mood enhancer[3]
  • Modulates the levels of superoxide dismutase (SOD) and oxidative damage from metals in the brain – protective against neurodegeneration[4]
  • Anxiolytic and analgesic effects[5,6]
  • Reduce the levels of the stress marker HSP70 in the brain – adaptogenic effect[7]
  • Synergistic with curcumin and EGCG[8]

[1] Aguiar S, Borowski T (2013). Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res, 16(4):313-26. doi: 10.1089/rej.2013.1431
[2] Sivaramakrishna, C, et al (2005). Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 66: 2719–2728. doi: 10.1016/j.phytochem.2005.09.016
[3] Rauf K, et al (2012). Effect of acute and sub-chronic use of Bacopa monnieri on dopamine and serotonin turnover in mice whole brain. AJPP. 2012;6:2767–2774. doi: 10.5897/AJPP12.244
[4] Chowdhuri DK, et al (2002). Antistress effects of bacosides of Bacopa monnieri: modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytother Res, 16(7):639-45. doi: 10.1002/ptr.1023
[5] Chatterjee M, et al (2010). Comparative evaluation of Bacopa monniera and Panax quniquefolium in experimental anxiety and depressive models in mice. Indian J Exp Biol, 48(3):306-13. PMID: 21046986
[6] Bhaskar M, Jagtap AG (2011). Exploring the possible mechanisms of action behind the antinociceptive activity of Bacopa monniera. Int J Ayurveda Res, 2(1):2-7. doi: 10.4103/0974-7788.83173
[7] Anbarasi K, et al (2006). Cigarette smoking induces heat shock protein 70 kDa expression and apoptosis in rat brain: Modulation by bacoside A. Neuroscience, 138(4):1127-35. doi: 10.1016/j.neuroscience.2005.11.029
[8] Velmurugan K, et al (2009). Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim. Free Radic Biol Med, 46(3):430-40. doi: 10.1016/j.freeradbiomed.2008.10.050

Mucuna pruriens Seed

Scientific Name:
Mucuna pruriens, L-3,4-dihydroxyphenylalanine

Mucuna pruriens is a bean with neuroprotective and adaptogenic effects. Mucuna pruriens is a mood enhancer and increases focus and motivation.

Scientific Name:
Mucuna pruriens, L-3,4-dihydroxyphenylalanine


  • L-DOPA is its main active substance[1]
  • Regulates the levels of dopamine, noradrenaline, adrenaline and serotonin in the brain[2]
  • Synergistic with P5P in the production of dopamine[3]
  • Anxiolytic effects[4]
  • Reduces the production of cortisol in response to stress[5]
  • Decreases the levels of free radicals, reactive oxygen species, neurotoxins and heavy metal poisoning[6]
  • Increases the production of growth hormone and melanin[7]

[1] Pulikkalpura H, et al (2015). Levodopa in Mucuna pruriens and its degradation. Sci Rep, 5:11078. doi: 10.1038/srep11078
[2] Misu Y, et al (1996). Neurobiology of L-DOPAergic systems. Prog Neurobiol, 49(5):415-54. doi: 10.1016/0301-0082(96)00025-1
[3] Das Gupta V, Gupta A (1980). Effect of pyridoxal 5-phosphate on carbidopa and decarboxylation of levodopa. J Pharm Sci, 69(10):1145-8. doi: 10.1002/jps.2600691005
[4] Rana DG, Galani VJ (2014). Dopamine mediated antidepressant effect of Mucuna pruriens seeds in various experimental models of depression. Ayu, 35(1):90-7. doi: 10.4103/0974-8520.141949
[5] Shukla KK, et al (2007). Mucuna pruriens Reduces Stress and Improves the Quality of Semen in Infertile Men. Evid Based Complement Alternat Med, 7(1):137-44. doi: 10.1093/ecam/nem171
[6] Lampariello LR, et al (2012). The Magic Velvet Bean of Mucuna pruriens. J Tradit Complement Med, 2(4):331-9. PMID: 24716148
[7] Chihara K, et al (1986). L-dopa stimulates release of hypothalamic growth hormone-releasing hormone in humans. J Clin Endocrinol Metab, 62(3):466-73. doi: 10.1210/jcem-62-3-466

Coleus forskohlii Root

Scientific Name:
Forskolin from Coleus Forskohlii

Forskolin is a labdane diterpene and the main bioactive compound in Coleus forskohlii, having nootropic and adaptogenic effects. Forskolin improves learning, memory and mental stamina.

Scientific Name:
Forskolin from Coleus Forskohlii


      • Forskolin increases intracellular levels of cAMP through adenylate cyclase activation – increased responsiveness to extracellular stimuli[1]
      • Improves stress response by improving cell communication in the HPA axis – adaptogenic effect[2]
      • Synergistic with artichoke extract in increasing cAMP levels[1]
      • Inhibits acetylcholinesterase – increased acetylcholine levels[3]
      • Decreases fatigue[4]
      • Anti-inflammatory effects[5]

[1] Litosch I, Hudson TH, Mills I, Li SY, Fain JN (1982). Forskolin as an activator of cyclic AMP accumulation and lipolysis in rat adipocytes. Mol Pharmacol, 22(1):109-15. PMID: 6289066
[2] Kumari M, Cover PO, Poyser RH, Buckingham JC (1997). Stimulation of the hypothalamo-pituitary-adrenal axis in the rat by three selective type-4 phosphodiesterase inhibitors: in vitro and in vivo studies. Br J Pharmacol, 121(3):459-68. doi: 10.1038/sj.bjp.0701158
[3] Yang QR, Wu HZ, Wang XM, Zou GA, Liu YW (2006). Three new diterpenoids from Coleus forskohlii Briq. J Asian Nat Prod Res, 8(4):355-60. doi: 10.1080/10286020500172236
[4] Henderson S, et al (2005). Effects of coleus forskohlii supplementation on body composition and hematological profiles in mildly overweight women. J Int Soc Sports Nutr, 2:54-62. doi: 10.1186/1550-2783-2-2-54
[5] Menon DB, Latha K (2011). Phytochemical Screening and In vitro Anti-inflammatory Activity of the Stem of Coleus forskohlii. 3(23):75-79. doi: 10.5530/pj.2011.23.11