Supports cognitive performance*

Supports exercise performance*

Supports mood* 


Caffeine is a methylxanthine compound used to counter fatigue and promote alertness. It’s found in the seeds, fruits, nuts, or leaves of a number of plants native to Africa, East Asia, and South America. These include coffee beans (as well as coffee cherry fruits), cocoa beans, guarana berries, kola nuts, and leaves from tea, guayusa, and yerba mate. Caffeine is quickly absorbed in the gastrointestinal tract and is able to easily cross the blood-brain barrier to reach the brain, where it has stimulating and invigorating mechanisms. The caffeine we get in a morning coffee, a cup of tea, or an energy drink can help us perform better physically and mentally.* It does this by promoting arousal (wakefulness), which is a necessary ingredient for being able to pay attention and react quickly. Not surprisingly, this has led to caffeine being one of the most widely used and studied substances for both sports performance and brain function. 


We use anhydrous caffeine, a dehydrated form of caffeine (the word “anhydrous” means without water) that is highly concentrated.

Caffeine is classified by the US Food and Drug Administration as generally recognized as safe (GRAS).

Caffeine is non-GMO, gluten-free, and vegan.


We consider caffeine to follow hormetic dosing principles (see Neurohacker Dosing Principles) and to have a hormetic range (i.e., a dosing range below and above which results would be poorer). Caffeine is one of the most used, and best studied nootropic and ergogenic compounds. When used as a nootropic (i.e., to promote alertness, focus, reaction time, etc.) caffeine is typically dosed from 50 to 200 mg. When used as an ergogenic (i.e., for sports performance) just prior to exercise the upper end of the dose range can be as high as 600 mg [1]. In both of these cases, responses to caffeine tend to follow a hormetic curve, with low-to-moderate doses of caffeine supporting better cognitive and sports performance, but doses above the higher end of the range hindering performance. We have selected to dose caffeine at the amount found in a small cup of coffee. This is in the middle of the range for nootropic purposes and on the lower end of what’s used for ergogenic purposes.


Brain function and cognition

Promotes wakefulness [2]

Supports cognitive performance [1,3–7]

Supports executive function [8–10]

Supports information processing rate [11–13]

Supports simple and sustained attention [1,8,13,14]

Supports vigilance [1,14]

Supports task switching [13]

Supports reaction time [1,6,7,13]

Supports reasoning [5]

Supports creative thinking [9]

Supports resistance to mental fatigue [12,14]

Adenosine receptor antagonist [11]

Supports acetylcholine signaling [3,15–17]

Supports dopamine signaling [3,18–23]

Supports serotonin signaling [3,17,24–27]

Supports glutamate signaling [3,18,19]

Supports GABA signaling [3,17]

Supports noradrenaline signaling [3,26]

Supports cortical activation in the brain [3,11]

Supports cerebral metabolism [3,11]

Supports neuroprotective functions [28,29] 


Supports positive affect [3,6,7,10,30] 

Physical performance

Supports resistance to physical fatigue [4,7,8,31]

Supports resistance to exhaustion [1]

Supports muscle endurance and strength exercise activities [1]

Supports speed, power, and agility during intense exercise [1] 

Other effects

Supports metabolic rate [32–34]

Non-selective phosphodiesterase inhibitor [35]


Theobromine as a CNS stimulant, with faster onset and shorter duration than Theobromine [36]

L-Theanine in cognitive performance [12,37–40]

Choline donors (e.g., citicoline, alpha-GPC) to support attention, concentration, and working memory [41]

L-ornithine to support enhanced mood and cognitive performance [42]

Alpinia galanga for cognitive performance [43,44]


[1]T.M. McLellan, J.A. Caldwell, H.R. Lieberman, Neurosci. Biobehav. Rev. 71 (2016) 294–312.

[2]T. Porkka-Heiskanen, Handb. Exp. Pharmacol. (2011) 331–348.

[3]B.B. Fredholm, K. Bättig, J. Holmén, A. Nehlig, E.E. Zvartau, Pharmacol. Rev. 51 (1999) 83–133.

[4]V. Maridakis, P.J. O’Connor, P.D. Tomporowski, Int. J. Neurosci. 119 (2009) 1239–1258.

[5]M.J. Jarvis, Psychopharmacology 110 (1993) 45–52.

[6]A. Nehlig, J. Alzheimers. Dis. 20 Suppl 1 (2010) S85–94.

[7]C.H.S. Ruxton, Nutr. Bull. 33 (2008) 15–25.

[8]J. Lanini, J.C.F. Galduróz, S. Pompéia, Hum. Psychopharmacol. 31 (2016) 29–43.

[9]K. Soar, E. Chapman, N. Lavan, A.S. Jansari, J.J.D. Turner, Appetite 105 (2016) 156–163.

[10]F.L. Dodd, D.O. Kennedy, L.M. Riby, C.F. Haskell-Ramsay, Psychopharmacology 232 (2015) 2563–2576.

[11]G. Burnstock, Advances in Experimental Medicine and Biology 986 (2013) 1–12.

[12]C.F. Haskell, D.O. Kennedy, A.L. Milne, K.A. Wesnes, A.B. Scholey, Biol. Psychol. 77 (2008) 113–122.

[13]S.J.L. Einöther, T. Giesbrecht, Psychopharmacology 225 (2013) 251–274.

[14]A. Smith, Food Chem. Toxicol. 40 (2002) 1243–1255.

[15]E. Acquas, G. Tanda, G. Di Chiara, Neuropsychopharmacology 27 (2002) 182–193.

[16]A.J. Carter, W.T. O’Connor, M.J. Carter, U. Ungerstedt, J. Pharmacol. Exp. Ther. 273 (1995) 637–642.

[17]D. Shi, O. Nikodijević, K.A. Jacobson, J.W. Daly, Cell. Mol. Neurobiol. 13 (1993) 247–261.

[18]G. Racchetti, A. Lorusso, C. Schulte, D. Gavello, V. Carabelli, R. D’Alessandro, J. Meldolesi, J. Cell Sci. 123 (2010) 165–170.

[19]D. Quarta, J. Borycz, M. Solinas, K. Patkar, J. Hockemeyer, F. Ciruela, C. Lluis, R. Franco, A.S. Woods, S.R. Goldberg, S. Ferré, J. Neurochem. 91 (2004) 873–880.

[20]B.E. Garrett, S.G. Holtzman, Eur. J. Pharmacol. 262 (1994) 65–75.

[21]K.R. Powell, P.M. Iuvone, S.G. Holtzman, Pharmacol. Biochem. Behav. 69 (2001) 59–70.

[22]M. Solinas, S. Ferré, Z.-B. You, M. Karcz-Kubicha, P. Popoli, S.R. Goldberg, J. Neurosci. 22 (2002) 6321–6324.

[23]X. Zheng, S. Takatsu, H. Wang, H. Hasegawa, Pharmacol. Biochem. Behav. 122 (2014) 136–143.

[24]D.J. Haleem, A. Yasmeen, M.A. Haleem, A. Zafar, Life Sci. 57 (1995) PL285–92.

[25]S. Khaliq, S. Haider, F. Naqvi, T. Perveen, S. Saleem, D.J. Haleem, Pak. J. Pharm. Sci. 25 (2012) 21–25.

[26]M.D. Chen, W.H. Lin, Y.M. Song, P.Y. Lin, L.T. Ho, Zhonghua Yi Xue Za Zhi 53 (1994) 257–261.

[27]M. Okada, Y. Kawata, K. Kiryu, K. Mizuno, K. Wada, H. Tasaki, S. Kaneko, J. Neurochem. 69 (2002) 2581–2588.

[28]M.A. Schwarzschild, K. Xu, E. Oztas, J.P. Petzer, K. Castagnoli, N. Castagnoli Jr, J.-F. Chen, Neurology 61 (2003) S55–61.

[29]M. Kolahdouzan, M.J. Hamadeh, CNS Neurosci. Ther. 23 (2017) 272–290.

[30]S.H. Backhouse, S.J.H. Biddle, N.C. Bishop, C. Williams, Appetite 57 (2011) 247–252.

[31]J.M. Davis, Z. Zhao, H.S. Stock, K.A. Mehl, J. Buggy, G.A. Hand, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 (2003) R399–404.

[32]K.J. Acheson, B. Zahorska-Markiewicz, P. Pittet, K. Anantharaman, E. Jéquier, Am. J. Clin. Nutr. 33 (1980) 989–997.

[33]A. Astrup, S. Toubro, S. Cannon, P. Hein, L. Breum, J. Madsen, Am. J. Clin. Nutr. 51 (1990) 759–767.

[34]J. LeBlanc, M. Jobin, J. Côté, P. Samson, A. Labrie, J. Appl. Physiol. 59 (1985) 832–837.

[35]O.H. Choi, M.T. Shamim, W.L. Padgett, J.W. Daly, Life Sci. 43 (1988) 387–398.

[36]R. Franco, A. Oñatibia-Astibia, E. Martínez-Pinilla, Nutrients 5 (2013) 4159–4173.

[37]S.J.L. Einöther, V.E.G. Martens, J.A. Rycroft, E.A. De Bruin, Appetite 54 (2010) 406–409.

[38]T. Giesbrecht, J.A. Rycroft, M.J. Rowson, E.A. De Bruin, Nutr. Neurosci. 13 (2010) 283–290.

[39]G.N. Owen, H. Parnell, E.A. De Bruin, J.A. Rycroft, Nutr. Neurosci. 11 (2008) 193–198.

[40]C.N. Kahathuduwa, T.L. Dassanayake, A.M.T. Amarakoon, V.S. Weerasinghe, Nutr. Neurosci. 20 (2017) 369–377.

[41]S.E. Bruce, K.B. Werner, B.F. Preston, L.M. Baker, Int. J. Food Sci. Nutr. 65 (2014) 1003–1007.

[42]A. Misaizu, T. Kokubo, K. Tazumi, M. Kanayama, Y. Miura, Prev Nutr Food Sci 19 (2014) 367–372.

[43]S. Srivastava, M. Mennemeier, S. Pimple, J. Am. Coll. Nutr. 36 (2017) 631–639.

[44]S. Srivastava, M. Mennemeier, J.A. Chaudhary, J. Am. Coll. Nutr. 40 (2021) 224–236.