Apigenin
Apigenin belongs to the flavone class of flavonoids. It is one of the more common flavones in the diet, found in many fruits and vegetables, including celery and parsley. It is found in very high amounts in the flowers used to make chamomile tea. Apigenin has been reported to support cardiovascular, brain, and kidney function, and metabolic benefits. It indirectly boosts NAD+ by modulating the activity of the CD38 NAD+-consuming pathway. Apigenin is also supportive of antioxidant defenses and the mitochondrial cellular energy network.
Citrus grandis (i.e., pomelo) fruit extract was selected as an ingredient to provide a standardized amount of apigenin. Pomelo is one of the original ancestral citrus fruits from which all modern cultivated citrus varieties originated. They are consumed as a fruit throughout Southeast Asia. A pomelo is somewhat similar in appearance to a large grapefruit. This is because grapefruits originated as a back-cross of pomelo and sweet orange. Peels of pomelo (or grapefruits) are often used to produce the apigenin found in dietary supplements.
Flavonoid molecules are part of plants’ protective responses to mild environmental stress. Consuming them tends to produce adaptive functional responses, upregulating pathways that provide stress resistance. Because of this, we don’t think of flavones like apigenin as being “more is better” ingredients. Instead we think it’s better to use them following hormetic dosing principles (see Neurohacker Dosing Principles). Because of this we use a low dose of apigenin. Flavonoids are additive, and often synergistic with other polyphenol compounds, so the combination of all polyphenols in a formulation should be considered when determining dosage (not the amount of a single polyphenol molecule in isolation).
Mitochondrial biogenesis
Mitochondrial function
Signaling pathways
Exercise performance (ergogenic effect)
Metabolism
Body weight
Cellular signaling
Antioxidant defenses
Cardiovascular function
Brain function
Gut microbiota
Healthy aging and longevity
REFERENCES
[1] Choi WH, et al. Mol Nutr Food Res. 2017;61(12). doi:10.1002/mnfr.201700218
[2] Duarte S, et al. Int J Mol Sci. 2013;14(9):17664-17679. doi:10.3390/ijms140917664
[3] Jung UJ, et al. Nutrients. 2016;8(5). doi:10.3390/nu8050305
[4] Cardenas H, et al. Int J Mol Sci. 2016;17(3):323. doi:10.3390/ijms17030323
[5] Escande C, et al. Diabetes. 2013;62(4):1084-1093. doi:10.2337/db12-1139
[6] Wong TY, et al. Biomed Pharmacother. 2017;96:1000-1007. doi:10.1016/j.biopha.2017.11.131
[7] Ono M, Fujimori K. J Agric Food Chem. 2011;59(24):13346-13352. doi:10.1021/jf203490a
[8] Wei X, et al. Clin Sci . 2017;131(7):567-581. doi:10.1042/CS20160780
[9] Tong X, et al. Mol Carcinog. 2012;51(3):268-279. doi:10.1002/mc.20793
[10] Zang M, et al. Diabetes. 2006;55(8):2180-2191. doi:10.2337/db05-1188
[11] Bridgeman BB, et al. Cell Signal. 2016;28(5):460-468. doi:10.1016/j.cellsig.2016.02.008
[12] Mahajan UB, et al. Int J Mol Sci. 2017;18(4). doi:10.3390/ijms18040756
[13] Wang F, et al. Chem Biol Interact. 2017;275:171-177. doi:10.1016/j.cbi.2017.08.006
[14] Ren B, et al. Eur J Pharmacol. 2016;773:13-23. doi:10.1016/j.ejphar.2016.01.002
[15] Kim A, Lee CS. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(3):271-283. doi:10.1007/s00210-017-1454-4
[16] Zhang F, et al. Neurol Sci. 2014;35(4):583-588. doi:10.1007/s10072-013-1566-7
[17] Han Y, et al. J Clin Neurosci. 2017;40:157-162. doi:10.1016/j.jocn.2017.03.003
[18] Zhao L, et al. Molecules. 2013;18(8):9949-9965. doi:10.3390/molecules18089949
[19] Nielsen SE, et al. Br J Nutr. 1999;81(6):447-455.
[20] Yu W, et al. Evid Based Complement Alternat Med. 2017;2017:2590676. doi:10.1155/2017/2590676
[21] Li L, Somerset S. Nutrients. 2018;10(9). doi:10.3390/nu10091264
[22] Wang M, et al. Molecules. 2017;22(8). doi:10.3390/molecules22081292
[23] Stump TA, et al. J Pharm Pharmacol. 2017;69(7):907-916. doi:10.1111/jphp.12718
[24] Yang J, et al. Biomed Pharmacother. 2018;103:699-707. doi:10.1016/j.biopha.2018.04.072
[25] Babcook MA, Gupta S. ACurr Drug Targets. November 2012. PMID: 23140291.
[26] Shukla S, et al. Pharm Res. 2012;29(6):1506-1517. doi:10.1007/s11095-011-0625-0