Goji (Lycium barbarum) Fruit Juice Extract

Goji (Lycium barbarum) Fruit Juice Extract COMMON NAME

Goji | Goji Berry | Wolfberry | Boxthorn 

TOP BENEFITS OF GOJI FRUIT

Supports healthy vision*

Supports brain function *

Supports general health and well-being *

WHAT IS GOJI FRUIT?

Goji berry, also known as wolfberry, is a berry-type fruit from Lycium barbarum (goji is an approximation of the pronunciation of the Chinese name gouqizi). The fruit is consumed in many regions in Asia—in addition to China, countries including Japan, Korea, Vietnam, Thailand, and Tibet all have names for goji in their native languages. More recently the fruits have gained a reputation as a superfood in North America and Europe. The fruit has a pink-red color and a sweet and tangy taste; they can be eaten fresh and dried, or drank as a juice or tea. Goji fruits have been used in Traditional Chinese Medicine (TCM) for thousands of years. Within TCM this fruit is thought to nourish and tonify the eyes, kidney, and liver. Goji  fruit contains myriad bioactive compounds, including polyphenols, amino acids, minerals, vitamins, carotenoids (it’s a rich source of an eye health carotenoid called zeaxanthin), and polysaccharides. The polysaccharides are the most well-studied components and are thought to be a main agent responsible for many of the health benefits. Traditional and modern uses of goji fruits include promoting healthy vision [1], enhancing energy, supporting cognitive health, and promoting well-being [2–4].

NEUROHACKER’S GOJI FRUIT SOURCING

The Goji extract is made from the fruit’s juice and standardized for 45% polysaccharides. 

Goji Fruit Juice Extract is gluten-free, non-GMO, vegan, Kosher, and Halal certified.

GOJI FRUIT DOSING PRINCIPLES AND RATIONALE

Goji fruity has been used in clinical studies in several forms—dried fruit, fruit extract, juice, juice powder—and a wide range of doses. TCM generally uses a dose of dried goji fruits between 5-12 grams. We consider goji fruit as having a threshold response, with much of the health benefits occuring in the lower end of this dose range (see Neurohacker Dosing Principles). Concentrated extracts of goji fruit are dosed in lower amounts, especially when combined with other fruit and herb extracts. Since we are using a goji fruit juice extract standardized for 45% polysaccharides, combined with other fruits and herb extracts, we chose a dose to be consistent with the lower dose range more typically used in combination ingredient studies. 

GOJI FRUIT KEY MECHANISMS

Vision

Supports visual function [5–7]

Supports healthy retinal function [5,8–20]

Supports lens health and function [21,22]

Supports healthy retinal and eye response to light [23,24]

Supports optic nerve function [25]

Counters ocular oxidative stress [9,13,22–24,26,27]

Supports ocular antioxidant defenses [22–24]

Supports retinal Nrf2 signaling [23]

Supports retinal mitochondrial function [28]

Supports healthy retinal vasculature [11,29]

Supports blood-retinal barrier integrity [14,15,30]

Supports retinal mitochondrial function [13,28]

Enhances retinal carotenoid levels [28]

Supports the proliferation of retinal progenitor cells [31]

Brain function

Supports attention and cognitive function [32]

Supports synaptic plasticity [33–35]

Supports neuroprotection [34,36–41]

Supports cerebral blood flow [40]

Supports neurogenesis [34,35,41]

General health and well-being

Supports health and well-being [2,3].

Supports blood levels of antioxidant defenses [42,43]

Supports metabolic function [43–45]

Supports gastroprotection [46]

Modulates the gut microbiota [47–49]


REFERENCES

[1]A.L. Manthey, K. Chiu, K.-F. So, Int. Rev. Neurobiol. 135 (2017) 1–27.

[2]C.-H. Paul Hsu, D.M. Nance, H. Amagase, J. Med. Food 15 (2012) 1006–1014.

[3]H. Amagase, D.M. Nance, J. Altern. Complement. Med. 14 (2008) 403–412.

[4]Y. Wang, H. Chen, M. Wu, S. Zeng, Y. Liu, J. Dong, in: R.C.-C. Chang, K.-F. So (Eds.), Lycium Barbarum and Human Health, Springer Netherlands, Dordrecht, 2015, pp. 1–26.

[5]H.H.-L. Chan, H.-I. Lam, K.-Y. Choi, S.Z.-C. Li, Y. Lakshmanan, W.-Y. Yu, R.C.-C. Chang, J.S.-M. Lai, K.-F. So, J. Ethnopharmacol. 236 (2019) 336–344.

[6]K.-J. Chien, C.-T. Horng, Y.-S. Huang, Y.-H. Hsieh, C.-J. Wang, J.-S. Yang, C.-C. Lu, F.-A. Chen, Mol. Med. Rep. 17 (2018) 809–818.

[7]S. Xu, S. Liu, G. Yan, Med. Sci. Monit. 25 (2019) 9794–9800.

[8]H.-Y. Li, M. Huang, Q.-Y. Luo, X. Hong, S. Ramakrishna, K.-F. So, Cell Transplant. 28 (2019) 607–618.

[9]H. Li, Y. Liang, K. Chiu, Q. Yuan, B. Lin, R.C.-C. Chang, K.-F. So, PLoS One 8 (2013) e68881.

[10]D. Yang, K.-F. So, A.C. Lo, Clin. Experiment. Ophthalmol. 45 (2017) 717–729.

[11]Q. Yao, Y. Yang, X. Lu, Q. Zhang, M. Luo, P.A. Li, Y. Pan, Evid. Based. Complement. Alternat. Med. 2018 (2018) 7943212.

[12]F. Liu, J. Zhang, Z. Xiang, D. Xu, K.-F. So, N. Vardi, Y. Xu, Invest. Ophthalmol. Vis. Sci. 59 (2018) 597–611.

[13]L. Liu, X.-Y. Sha, Y.-N. Wu, M.-T. Chen, J.-X. Zhong, Neural Regeneration Res. 15 (2020) 1526–1531.

[14]S.-Y. Li, D. Yang, C.-M. Yeung, W.-Y. Yu, R.C.-C. Chang, K.-F. So, D. Wong, A.C.Y. Lo, PLoS One 6 (2011) e16380.

[15]X.-S. Mi, Q. Feng, A.C.Y. Lo, R.C.-C. Chang, S.K. Chung, K.-F. So, Neural Regeneration Res. 15 (2020) 2344–2352.

[16]Y. Lakshmanan, F.S.-Y. Wong, W.-Y. Yu, S.Z.-C. Li, K.-Y. Choi, K.-F. So, H.H.-L. Chan, Invest. Ophthalmol. Vis. Sci. 60 (2019) 2023–2033.

[17]Y. Lakshmanan, F.S.Y. Wong, B. Zuo, K.-F. So, B.V. Bui, H.H.-L. Chan, Invest. Ophthalmol. Vis. Sci. 60 (2019) 4606–4618.

[18]M. Yang, K.-F. So, A.C.Y. Lo, W.C. Lam, Int. J. Mol. Sci. 21 (2020).

[19]C.-K. Hu, Y.-J. Lee, C.M. Colitz, C.-J. Chang, C.-T. Lin, Vet. Ophthalmol. 15 Suppl 2 (2012) 65–71.

[20]P.H.W. Chu, H.-Y. Li, M.-P. Chin, K.-F. So, H.H.L. Chan, PLoS One 8 (2013) e81339.

[21]Q. Yao, Y. Zhou, Y. Yang, L. Cai, L. Xu, X. Han, Y. Guo, P.A. Li, J. Ethnopharmacol. 261 (2020) 113165.

[22]B. Qi, Q. Ji, Y. Wen, L. Liu, X. Guo, G. Hou, G. Wang, J. Zhong, PLoS One 9 (2014) e110275.

[23]L. Tang, S. Bao, Y. Du, Z. Jiang, A.O. Wuliji, X. Ren, C. Zhang, H. Chu, L. Kong, H. Ma, Biomed. Pharmacother. 103 (2018) 829–837.

[24]J.-S. Chang, Y.-J. Lee, D.A. Wilkie, C.-T. Lin, J. Vet. Med. Sci. 80 (2018) 1108–1115.

[25]H.-Y. Li, Y.-W. Ruan, P.W.-F. Kau, K. Chiu, R.C.-C. Chang, H.H.L. Chan, K.-F. So, Cell Transplant. 24 (2015) 403–417.

[26]F.-C. Hsieh, C.-T. Hung, K.-C. Cheng, C.-Y. Wu, Y.-C. Chen, Y.-J. Wu, W. Liu, C.-C. Chiu, Oxid. Med. Cell. Longev. 2018 (2018) 4814928.

[27]P.-T. Yeh, Y.-J. Chen, N.-C. Lin, A.-I. Yeh, C.-H. Yang, J. Ocul. Pharmacol. Ther. 36 (2020) 179–189.

[28]H. Yu, L. Wark, H. Ji, L. Willard, Y. Jaing, J. Han, H. He, E. Ortiz, Y. Zhang, D.M. Medeiros, D. Lin, Mol. Nutr. Food Res. 57 (2013) 1158–1169.

[29]X.-S. Mi, K. Chiu, G. Van, J.W.C. Leung, A.C.Y. Lo, S.K. Chung, R.C.-C. Chang, K.-F. So, Neural Regeneration Res. 7 (2012) 645–651.

[30]J. Wang, Y. Yao, X. Liu, K. Wang, Q. Zhou, Y. Tang, Am. J. Transl. Res. 11 (2019) 6304–6315.

[31]H. Wang, B.W.-M. Lau, N.-L. Wang, S.-Y. Wang, Q.-J. Lu, R.C.-C. Chang, K.-F. So, Neural Regeneration Res. 10 (2015) 1976–1981.

[32]S.-Y. Chung, M. Kang, S.-B. Hong, H. Bae, S.-H. Cho, J. Res. Med. Sci. 24 (2019) 102.

[33]A.K. Ruíz-Salinas, R.A. Vázquez-Roque, A. Díaz, G. Pulido, S. Treviño, B. Floran, G. Flores, J. Nutr. Biochem. 83 (2020) 108416.

[34]Y. Zhou, Y. Duan, S. Huang, X. Zhou, L. Zhou, T. Hu, Y. Yang, J. Lu, K. Ding, D. Guo, X. Cao, G. Pei, Int. J. Biol. Macromol. 144 (2020) 1004–1012.

[35]E. Zhang, S.Y. Yau, B.W.M. Lau, H. Ma, T.M.C. Lee, R.C.-C. Chang, K.F. So, Cell Transplant. 21 (2012) 2635–2649.

[36]D. Yang, S.-Y. Li, C.-M. Yeung, R.C.-C. Chang, K.-F. So, D. Wong, A.C.Y. Lo, PLoS One 7 (2012) e33596.

[37]J. Gao, C. Chen, Y. Liu, Y. Li, Z. Long, H. Wang, Y. Zhang, J. Sui, Y. Wu, L. Liu, C. Yang, Life Sci. 121 (2015) 124–134.

[38]W.-J. Liu, H.-F. Jiang, F.U. Rehman, J.-W. Zhang, Y. Chang, L. Jing, J.-Z. Zhang, Int. J. Biol. Sci. 13 (2017) 901–910.

[39]W. Chen, X. Cheng, J. Chen, X. Yi, D. Nie, X. Sun, J. Qin, M. Tian, G. Jin, X. Zhang, PLoS One 9 (2014) e88076.

[40]P. Zhao, R. Zhou, X.-Y. Zhu, G. Liu, Y.-P. Zhao, P.-S. Ma, W. Wu, Y. Niu, T. Sun, Y.-X. Li, J.-Q. Yu, Z.-M. Qian, Neurochem. Res. 42 (2017) 2798–2813.

[41]C.-S. Lam, G.L. Tipoe, K.-F. So, M.-L. Fung, PLoS One 10 (2015) e0117990.

[42]H. Amagase, B. Sun, C. Borek, Nutr. Res. 29 (2009) 19–25.

[43]M.Z. de Souza Zanchet, G.M. Nardi, L. de Oliveira Souza Bratti, F.B. Filippin-Monteiro, C. Locatelli, Oxid. Med. Cell. Longev. 2017 (2017) 9763210.

[44]H. Amagase, D.M. Nance, J. Am. Coll. Nutr. 30 (2011) 304–309.

[45]H. Cai, F. Liu, P. Zuo, G. Huang, Z. Song, T. Wang, H. Lu, F. Guo, C. Han, G. Sun, Med. Chem. 11 (2015) 383–390.

[46]Y.Z. Lian, I.-H. Lin, Y.-C. Yang, J.C.-J. Chao, Int. J. Biol. Macromol. 165 (2020) 1519–1528.

[47]Y. Kang, G. Yang, S. Zhang, C.F. Ross, M.-J. Zhu, Mol. Nutr. Food Res. 62 (2018) e1800535.

[48]Y. Ding, Y. Yan, D. Chen, L. Ran, J. Mi, L. Lu, B. Jing, X. Li, X. Zeng, Y. Cao, Food Funct. 10 (2019) 3671–3683.

[49]P. Skenderidis, C. Mitsagga, D. Lampakis, K. Petrotos, I. Giavasis, Microorganisms 8 (2019).