Minerals

Synergist compounds that support nutrient transport and utilization, cytokine and eicosanoid modulation, neurotrophin factors, redox reactions, cholesterol regulation, and much more..

Magnesium Glycinate

MAGNESIUM GLYCINATE COMMON NAMES

Magnesium Glycinate | Magnesium Diglycinate | Magnesium Bisglycinate | Magnesium | Glycine

TOP BENEFITS OF MAGNESIUM GLYCINATE

Supports sleep*
Supports cardiovascular function*
Supports mood*
Supports musculoskeletal health*
Supports cellular health*

WHAT IS MAGNESIUM GLYCINATE?

Magnesium glycinate is a chelated form of the mineral magnesium. It is made from one magnesium bound to two glycines. Both are involved in supporting efficient cellular function. Magnesium is one of the most abundant minerals in the body and is vital for the functioning of all living cells. It’s used in more than 300 enzymes. ATP (i.e., cellular energy) occurs complexed with ATP, so all enzymes utilizing ATP require magnesium. The same is true for enzymes that synthesize DNA and RNA, magnesium is always involved. Magnesium also plays a large role in breaking down sugars (glycolysis). Because magnesium supports the electrical functions of cells (i.e., it’s an electrolyte), muscle and nerve function rely on magnesium. Glycine was discovered in the early 1800s. Its name comes from the Greek word for sweet, because glycine has a sweet taste similar to sugar. Glycine is a conditional amino acid. While we can make glycine inside the body (i.e., it’s non-essential), there are circumstances where the amount we make and what we get in the diet appear to be insufficient to optimize functional health. Glycine is used to make many proteins in the body. An example is glutathione, which functions as part of cellular antioxidant defenses and detoxification. Glycine is also used in the brain as a neurotransmitter and throughout the body to make collagen. Collagen proteins are the best dietary source of glycine.

NEUROHACKER’S MAGNESIUM GLYCINATE SOURCING

Magnesium glycinate is used when there’s a role for both magnesium and glycine in the formula. For example, both support healthy cellular energy function. Magnesium is involved in making and using ATP and glycine supports building the antioxidant molecule glutathione, so boosts antioxidant defenses. Both also support evening physiology, including aspects of one or both of melatonin and GABA signaling. Magnesium glycinate has higher bioavailability than other more traditional forms of magnesium supplementation, because the two glycines act as a carrier and allow for efficient absorption[1].

Magnesium glycinate is non-GMO and Vegan.

MAGNESIUM GLYCINATE DOSING PRINCIPLES AND RATIONALE

The Recommended Dietary Allowances for magnesium in adults varies from 310 to 420 depending upon age and gender. A majority of Americans of all ages fall somewhat short of this amount. Supplying even a low dose of magnesium can help close the gap. Magnesium glycinate contains about 14% elemental magnesium by mass (the other 86% is glycine), so the complex provides far more glycine than magnesium. An average adult requires about 15 grams of glycine daily. About 2-3 grams is made in the body; diet must provide the rest[2] . Magnesium glycinate is generally considered to be dose-dependent (see Neurohacker Dosing Principles) in the range it’s commonly dosed. We generally dose it in small amounts to augment dietary intake of both magnesium and glycine. The amount chosen to be included also considers capsule count, since each additional ~90 mg of elemental magnesium supplied as magnesium glycinate requires an additional capsule.

MAGNESIUM KEY MECHANISMS

Metabolism and energy generation
Required for the synthesis of ATP by ATP synthase in mitochondria[3,4]
Forms a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes[5]
Co-factor for rate-limiting enzymes involved in carbohydrate and lipid metabolism[5,6]
Co-factor for rate-limiting enzymes involved protein and nucleic acid synthesis[5,6]
Supports insulin sensitivity[7,8]

Cell signaling
Supports cellular sodium and potassium influx and efflux[5]
Modulates calcium entry into cells so supports balanced calcium signaling[5,6]
Cofactor for protein phosphorylation (enzyme activation)[5,6]
Cofactor for the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis[9]

Cell structure
Stabilizes proteins, nucleic acids, chromosomes, and biological membranes[5]

Cardiovascular function
Supports cardiac muscle contraction and heart rhythm[6,10]
Supports vascular tone[6,10]
Supports platelet function[6,11]

Brain function
Supports hearing[12–18]
Supports neurotransmitter release and normal neurological function[6]
Supports the activity of the glutamate N-methyl-D-aspartate (NMDA) receptor[19,20]
Supports glutamate dehydrogenase (GDH) enzyme - converts glutamate to α-ketoglutarate, and vice versa[21,22]
Supports serotonin N-acetyltransferase - an enzyme that is involved in the day/night rhythmic production of melatonin from serotonin[23,24]
Supports brain-derived neurotrophic factor (BDNF)[20,25,26]
Supports neural stem cell proliferation[27]
Supports brain mitochondrial function[27]

Mood
Supports mental well-being[28,29]
Supports healthy behavioral and physiological responses to stress[26,30–33]

Sleep
Supports sleep quality[34–37]
Supports healthy EEG and neuroendocrine responses during sleep[38,39]
Supports sleep organization and regulation[40–43]
Supports exercise tolerance if sleep is insufficient[44]

Muscle function
Required for muscle contraction[6,45]
Supports muscle strength[46,47]

Skeletal system
Supports bone metabolism/remodeling by calcium absorption[5]
Supports calcitonin and parathyroid hormone activity[5]
Supports bone formation[5]

Gut microbiota
Supports a healthy composition of the gut microbiota[48–50]

Synergies
Commonly supplemented with calcium for bone support
Supports vitamin D metabolism[51]
With B-complex vitamins and melatonin supplementation for sleep support[52]
With Zinc and melatonin supplementation for sleep support[53]
With Vitamin B6 for mood support[54,55]
With Hawthorn and California poppy for mood support[56]
With antioxidant vitamins for hearing support[57–59]

GLYCINE KEY MECHANISMS

Structure and Function Roles
Plays an essential role in protein synthesis, especially collagen synthesis[60]
Providing flexibility to active sites in many enzymes[61]
Supports cell membrane function to promote balanced immune responses[62]

Protein Precursor
Precursor for synthesis of glutathione[63–65]
Precursor for synthesis of creatine[66]
Precursor for synthesis of porphyrins and heme[67]
Precursor for synthesis of purines[68]

Brain and Nervous System Function
Acts as a neurotransmitter (i.e., has its own neurotransmission system)[69–72]
Supports healthy glutaminergic neurotransmission[73]
Supports serotonergic neurotransmission[74]

Sleep
Supports sleep quality[75,76]
Reduces daytime sleepiness and fatigue; improves vigilance[75–77]
Supports sleep-associated cutaneous heat loss[78]
Supports the activity of orexin neurons[79]
Supports non-rapid eye movement (NREM) sleep[79]

Longevity / Hallmarks of Aging
Supports metabolism of glycation end products (i.e., sugar-protein cross links)[80–83]
Supports growth hormone secretion[84]

Nutrient Synergies
With N-Acetyl-Cysteine (NAC) for glutathione synthesis[85–87]


REFERENCES

[1] S.A. Schuette, B.A. Lashner, M. Janghorbani, JPEN J. Parenter. Enteral Nutr. 18 (1994) 430–435.
[2] E. Meléndez-Hevia, P. De Paz-Lugo, A. Cornish-Bowden, M.L. Cárdenas, J. Biosci. 34 (2009) 853–872.
[3] Y.H. Ko, S. Hong, P.L. Pedersen, J. Biol. Chem. 274 (1999) 28853–28856.
[4] A.U. Igamberdiev, L.A. Kleczkowski, Front. Plant Sci. 6 (2015) 10.
[5] S.-M. Glasdam, S. Glasdam, G.H. Peters, Adv. Clin. Chem. 73 (2016) 169–193.
[6] W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5 (2012) i3–i14.
[7] M. Barbagallo, L.J. Dominguez, Arch. Biochem. Biophys. 458 (2007) 40–47.
[8] M. de L. Lima, T. Cruz, L.E. Rodrigues, O. Bomfim, J. Melo, R. Correia, M. Porto, A. Cedro, E. Vicente, Diabetes Res. Clin. Pract. 83 (2009) 257–262.
[9] S.Y. Cech, W.C. Broaddus, M.E. Maguire, Mol. Cell. Biochem. 33 (1980) 67–92.
[10] B.M. Altura, B.T. Altura, Magnesium 4 (1985) 226–244.
[11] M. Shechter, C.N. Merz, M. Paul-Labrador, S.R. Meisel, R.K. Rude, M.D. Molloy, J.H. Dwyer, P.K. Shah, S. Kaul, Am. J. Cardiol. 84 (1999) 152–156.
[12] Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, J. Attias, G. Weisz, T. Günther, Schriftenr. Ver. Wasser Boden Lufthyg. 88 (1993) 503–516.
[13] J. Attias, G. Weisz, S. Almog, A. Shahar, M. Wiener, Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, T. Guenther, Am. J. Otolaryngol. 15 (1994) 26–32.
[14] F. Scheibe, H. Haupt, B. Mazurek, O. König, Noise Health 3 (2001) 79–84.
[15] A. Gordin, D. Goldenberg, A. Golz, A. Netzer, H.Z. Joachims, Otol. Neurotol. 23 (2002) 447–451.
[16] B.I. Nageris, D. Ulanovski, J. Attias, Ann. Otol. Rhinol. Laryngol. 113 (2004) 672–675.
[17] J. Attias, S. Sapir, I. Bresloff, I. Reshef-Haran, H. Ising, Clin. Otolaryngol. Allied Sci. 29 (2004) 635–641.
[18] M.J. Cevette, D.M. Barrs, A. Patel, K.P. Conroy, S. Sydlowski, B.N. Noble, G.A. Nelson, J. Stepanek, Int. Tinnitus J. 16 (2011) 168–173.
[19] J.P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience 6 (1994) 87–96.
[20] N. Abumaria, B. Yin, L. Zhang, X.-Y. Li, T. Chen, G. Descalzi, L. Zhao, M. Ahn, L. Luo, C. Ran, M. Zhuo, G. Liu, J. Neurosci. 31 (2011) 14871–14881.
[21] L.A. Fahien, J.K. Teller, M.J. Macdonald, C.M. Fahien, Mol. Pharmacol. 37 (1990) 943–949.
[22] B. Pochwat, G. Nowak, B. Szewczyk, Pharmacol. Rep. 68 (2016) 881–885.
[23] D.J. Morton, M.F. James, J. Pineal Res. 2 (1985) 387–391.
[24] A.J. Billyard, D.L. Eggett, K.B. Franz, Magnes. Res. 19 (2006) 157–161.
[25] B. Pochwat, M. Sowa-Kucma, K. Kotarska, P. Misztak, G. Nowak, B. Szewczyk, Psychopharmacology 232 (2015) 355–367.
[26] J. Petrović, D. Stanić, Z. Bulat, N. Puškaš, M. Labudović-Borović, B. Batinić, D. Mirković, S. Ignjatović, V. Pešić, Horm. Behav. 105 (2018) 1–10.
[27] S. Jia, C. Mou, Y. Ma, R. Han, X. Li, Cell Biol. Int. 40 (2016) 465–471.
[28] G.A. Eby, K.L. Eby, Med. Hypotheses 67 (2006) 362–370.
[29] N.B. Boyle, C. Lawton, L. Dye, Nutrients 9 (2017) 429.
[30] E. Poleszak, B. Szewczyk, E. Kedzierska, P. Wlaź, A. Pilc, G. Nowak, Pharmacol. Biochem. Behav. 78 (2004) 7–12.
[31] L. Fromm, D.L. Heath, R. Vink, A.J. Nimmo, J. Am. Coll. Nutr. 23 (2004) 529S–533S.
[32] I.N. Iezhitsa, A.A. Spasov, M.V. Kharitonova, M.S. Kravchenko, Nutr. Neurosci. 14 (2011) 10–24.
[33] E. Poleszak, Pharmacol. Rep. 60 (2008) 483–489.
[34] M. Hornyak, U. Voderholzer, F. Hohagen, M. Berger, D. Riemann, Sleep 21 (1998) 501–505.
[35] M. Hornyak, P. Haas, J. Veit, H. Gann, D. Riemann, Alcohol. Clin. Exp. Res. 28 (2004) 1702–1709.
[36] B. Abbasi, M. Kimiagar, K. Sadeghniiat, M.M. Shirazi, M. Hedayati, B. Rashidkhani, J. Res. Med. Sci. 17 (2012) 1161–1169.
[37] N.R. Maor, M. Alperin, E. Shturman, H. Khairaldeen, M. Friedman, K. Karkabi, U. Milman, JAMA Intern. Med. 177 (2017) 617–623.
[38] K. Held, I.A. Antonijevic, H. Künzel, M. Uhr, T.C. Wetter, I.C. Golly, A. Steiger, H. Murck, Pharmacopsychiatry 35 (2002) 135–143.
[39] H. Murck, A. Steiger, Psychopharmacology 137 (1998) 247–252.
[40] S. Poenaru, S. Rouhani, J. Durlach, N. Aymard, F. Belkahla, Y. Rayssiguier, M. Iovino, Magnesium 3 (1984) 145–151.
[41] L. Popoviciu, D. Delast-Popoviciu, R. Delast-Popoviciu, I. Bagathai, G. Bicher, C. Buksa, S. Covaciu, E. Szalay, Rom. J. Neurol. Psychiatry 28 (1990) 19–24.
[42] H. Depoortere, D. Françon, J. Llopis, Neuropsychobiology 27 (1993) 237–245.
[43] D. Chollet, P. Franken, Y. Raffin, J.G. Henrotte, J. Widmer, A. Malafosse, M. Tafti, Behav. Genet. 31 (2001) 413–425.
[44] K. Tanabe, A. Yamamoto, N. Suzuki, N. Osada, Y. Yokoyama, H. Samejima, A. Seki, M. Oya, T. Murabayashi, M. Nakayama, M. Yamamoto, K. Omiya, H. Itoh, M. Murayama, Japanese Circulation Journal 62 (1998) 341–346.
[45] J.D. Potter, S.P. Robertson, J.D. Johnson, Fed. Proc. 40 (1981) 2653–2656.
[46] L.R. Brilla, T.F. Haley, J. Am. Coll. Nutr. 11 (1992) 326–329.
[47] L.J. Dominguez, M. Barbagallo, F. Lauretani, S. Bandinelli, A. Bos, A.M. Corsi, E.M. Simonsick, L. Ferrucci, Am. J. Clin. Nutr. 84 (2006) 419–426.
[48] E.K. Crowley, C.M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D.M. O’Gorman, C. Stanton, Y.M. Nolan, Mar. Drugs 16 (2018).
[49] B. Pyndt Jørgensen, G. Winther, P. Kihl, D.S. Nielsen, G. Wegener, A.K. Hansen, D.B. Sørensen, Acta Neuropsychiatr. 27 (2015) 307–311.
[50] G. Winther, B.M. Pyndt Jørgensen, B. Elfving, D.S. Nielsen, P. Kihl, S. Lund, D.B. Sørensen, G. Wegener, Acta Neuropsychiatr. 27 (2015) 168–176.
[51] Q. Dai, M.J. Shrubsole, R.M. Ness, D. Schlundt, Q. Cai, W.E. Smalley, M. Li, Y. Shyr, W. Zheng, Am. J. Clin. Nutr. 86 (2007) 743–751.
[52] G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, T. Lotti, Open Access Macedonian Journal of Medical Sciences 7 (2019) 3101–3105.
[53] M. Rondanelli, A. Opizzi, F. Monteferrario, N. Antoniello, R. Manni, C. Klersy, Journal of the American Geriatrics Society 59 (2011) 82–90.
[54] M.C.D. Souza, M.C. De Souza, A.F. Walker, P.A. Robinson, K. Bolland, Journal of Women’s Health & Gender-Based Medicine 9 (2000) 131–139.
[55] V.V. Kalinin, E.V. Zheleznova, T.A. Rogacheva, L.V. Sokolova, D.A. Polianskiĭ, A.A. Zemlianaia, D.M. Nazmetdinova, Zh. Nevrol. Psikhiatr. Im. S S Korsakova 104 (2004) 51–55.
[56] M. Hanus, J. Lafon, M. Mathieu, Curr. Med. Res. Opin. 20 (2004) 63–71.
[57] C.G. Le Prell, L.F. Hughes, J.M. Miller, Free Radic. Biol. Med. 42 (2007) 1454–1463.[58] J.C. Alvarado, V. Fuentes-Santamaría, M.C. Gabaldón-Ull, J.M. Juiz, Front. Neurosci. 12 (2018) 527.
[59] C.G. Le Prell, P.M. Gagnon, D.C. Bennett, K.K. Ohlemiller, Transl. Res. 158 (2011) 38–53.
[60] M.D. Shoulders, R.T. Raines, Annu. Rev. Biochem. 78 (2009) 929–958.
[61] B.X. Yan, Y.Q. Sun, J. Biol. Chem. 272 (1997) 3190–3194.
[62] Z. Zhong, M.D. Wheeler, X. Li, M. Froh, P. Schemmer, M. Yin, H. Bunzendaul, B. Bradford, J.J. Lemasters, Curr. Opin. Clin. Nutr. Metab. Care 6 (2003) 229–240.
[63] S.C. Lu, Biochim. Biophys. Acta 1830 (2013) 3143–3153.
[64] A. Ruiz-Ramírez, E. Ortiz-Balderas, G. Cardozo-Saldaña, E. Diaz-Diaz, M. El-Hafidi, Clin. Sci. 126 (2014) 19–29.
[65] M.F. McCarty, J.H. O’Keefe, J.J. DiNicolantonio, Ochsner J. 18 (2018) 81–87.
[66] J.T. Brosnan, R.P. da Silva, M.E. Brosnan, Amino Acids 40 (2011) 1325–1331.
[67] G. Layer, J. Reichelt, D. Jahn, D.W. Heinz, Protein Sci. 19 (2010) 1137–1161.
[68] J.M. Berg, T.J. Tymoczko, L. Stryer, Biochemistry. New York: WH Freeman (2002).
[69] J.W. Johnson, P. Ascher, Nature 325 (1987) 529–531.
[70] H. Betz, B. Laube, J. Neurochem. 97 (2006) 1600–1610.
[71] F. Zafra, C. Giménez, IUBMB Life 60 (2008) 810–817.
[72] A.A. Ghavanini, D.A. Mathers, H.-S. Kim, E. Puil, J. Neurophysiol. 95 (2006) 3438–3448.
[73] S.F. Traynelis, L.P. Wollmuth, C.J. McBain, F.S. Menniti, K.M. Vance, K.K. Ogden, K.B. Hansen, H. Yuan, S.J. Myers, R. Dingledine, Pharmacol. Rev. 62 (2010) 405–496.
[74] M. Bannai, N. Kawai, K. Nagao, S. Nakano, D. Matsuzawa, E. Shimizu, Psychiatry Clin. Neurosci. 65 (2011) 142–149.
[75] W. Yamadera, K. Inagawa, S. Chiba, M. Bannai, M. Takahashi, K. Nakayama, Sleep Biol. Rhythms 5 (2007) 126–131.
[76] M. Bannai, N. Kawai, K. Ono, K. Nakahara, N. Murakami, Front. Neurol. 3 (2012) 61.
[77] K. Inagawa, T. Hiraoka, T. Kohda, W. Yamadera, M. Takahashi, Sleep Biol. Rhythms 4 (2006) 75–77.
[78] N. Kawai, N. Sakai, M. Okuro, S. Karakawa, Y. Tsuneyoshi, N. Kawasaki, T. Takeda, M. Bannai, S. Nishino, Neuropsychopharmacology 40 (2015) 1405–1416.
[79] M. Hondo, N. Furutani, M. Yamasaki, M. Watanabe, T. Sakurai, PLoS ONE 6 (2011) e25076.
[80] S. Ramakrishnan, K.N. Sulochana, Exp. Eye Res. 57 (1993) 623–628.
[81] S. Ramakrishnan, K.N. Sulochana, R. Punitham, Indian J. Biochem. Biophys. 34 (1997) 518–523.
[82] M. Cruz, C. Maldonado-Bernal, R. Mondragón-Gonzalez, R. Sanchez-Barrera, N.H. Wacher, G. Carvajal-Sandoval, J. Kumate, J. Endocrinol. Invest. 31 (2008) 694–699.
[83] F. Bahmani, S.Z. Bathaie, S.J. Aldavood, A. Ghahghaei, Mol. Vis. 18 (2012) 439–448.
[84] K. Kasai, M. Kobayashi, S.I. Shimoda, Metabolism 27 (1978) 201–208.
[85] S. Xie, L. Tian, J. Niu, G. Liang, Y. Liu, Fish Physiology and Biochemistry 43 (2017) 1011–1020.
[86] K.A. Cieslik, R.V. Sekhar, A. Granillo, A. Reddy, G. Medrano, C.P. Heredia, M.L. Entman, D.J. Hamilton, S. Li, E. Reineke, A.A. Gupte, A. Zhang, G.E. Taffet, J. Gerontol. A Biol. Sci. Med. Sci. 73 (2018) 1167–1177.
[87] S. Xie, W. Zhou, L. Tian, J. Niu, Y. Liu, Fish Shellfish Immunol. 55 (2016) 233–241.


Potassium as Tripotassium Citrate

Potassium Citrate Common Names

Tripotassium Citrate | Potassium | Citrate | Citric Acid

Top Benefits of Potassium Citrate

  • Supports electrolyte balance*
  • Supports cellular energy*
  • Supports neuronal function*
  • Supports muscle function*

What Is Potassium Citrate?

Tripotassium citrate is a chelated form of the mineral potassium, with three potassium ions bound to a single citrate molecule. Both molecules are involved in supporting efficient cellular energy production. Potassium is one of the most abundant minerals in the body and is vital for the functioning of all living cells. Its main role is as an intracellular electrolyte (sodium is the main extracellular electrolyte). Potassium is needed for electrolyte balance, which supports the electrical functions of cells. Citrate is a salt of citric acid, a compound that was first identified in lemon juice, but is found in all citrus fruits. Citrate is an intermediate in the citric acid cycle (also called the Krebs cycle), a circular pathway that helps turn food into energy (i.e., ATP) and build important biomolecules. Adding intermediates like citrate into this cycle helps upregulate the flux (i.e., the cycle can essentially spin faster). Citrate is also a vital component of bone. 

Neurohacker’s Potassium Citrate Sourcing

We opt to use the citrate sale of potassium, instead of a different form of potassium, when both potassium and citrate play a role supporting pathways or processes in a formulation.

Potassium citrate sourcing is focused on ensuring it is non-GMO, gluten-free and vegan.

Tripotassium Citrate Dosing Principles and Rationale

Tripotassium citrate is used primarily as a source of citrate, an important Krebs cycle and mitochondrial nutrient. We dose it in small amounts to augment dietary intake. The adequate intake (AI) for potassium in adults is 3400 mg for men and 2600mg for women. Supplements will typically contain 99 mg or less per serving because of certain FDA constraints with potassium dosing. This amount would not be sufficient to correct issues with potassium intake.

Potassium Citrate Key Mechanisms

  • Main positively charged ion in intracellular fluid[1,2]
  • Along with sodium, potassium creates an electrochemical gradient across cell membranes known as the membrane potential[1,2]
  • Essential for nerve impulse transmission, muscle contraction and heart function[2]
  • Potassium is required for the activity of a few enzymes including pyruvate kinase (catalyzes the final step of glycolysis)[3]
  • Supports insulin secretion[4]
  • Regulates blood flow and blood pressure[4,5,6]
  • Protects kidney function[7,8]

REFERENCES

[1] J. M. Berg, J. L. Tymoczko, G. J. Gatto, L. Stryer, Eds., Biochemistry (W.H. Freeman and Company, 8th ed., 2015).
[2] W. Boron, E. Boulpaep, Eds., Medical Physiology (Elsevier, 3rd ed., 2016).
[3] M. J. Page, E. Di Cera, Physiol. Rev. 86, 1049–1092 (2006).
[4] C. Ekmekcioglu, I. Elmadfa, A. L. Meyer, T. Moeslinger, J. Physiol. Biochem. 72, 93–106 (2016).
[5] F. J. Haddy, P. M. Vanhoutte, M. Feletou, Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R546–52 (2006).
[6] M. S. Stone, L. Martyn, C. M. Weaver, Nutrients. 8 (2016), doi:10.3390/nu8070444.
[7] C. M. Weaver, Adv. Nutr. 4, 368S–77S (2013).
[8] C. P. Kovesdy et al., J. Am. Soc. Hypertens. 11, 783–800 (2017).

Selenium (as Se-methyl-L-selenocysteine)

COMMON NAME

Se-Methyl-L-Selenocysteine | Methyl Seleno Cysteine | Methylselenocysteine | MSC

TOP BENEFITS OF SELENIUM

  • Supports general immune health*
  • Supports thyroid health*

WHAT IS SELENIUM?

Selenium (Se) has been recognized as an essential trace mineral since 1957; about 25 different selenium-containing proteins have been identified in humans[1]. Selenium is critical for immune function, thyroid function, reproductive health, DNA synthesis, and antioxidant defenses[1,2]. Selenium concentration is highest in the thyroid gland, while muscles, liver and bone are the largest reservoirs of selenium. In foods, selenium is mostly found as selenomethionine, selenocysteine, and Se-methyl-L-selenocysteine (organic selenium). Selenium is found in soils as selenate and selenite (i.e., referred to as inorganic forms), which plants convert into organic forms. Brazil nuts are the best food source, with a single nut, on average, containing about the recommended dietary allowance (RDA) of selenium[3]. Fish, meat, poultry, mushrooms, and legumes are good sources of selenium. Most ingested selenium is converted into selenoproteins (i.e., proteins that have a selenocysteine)—selenoproteins are a member of the selenol class of organoselenium compounds. The selenoproteins are needed for antioxidant enzymes (e.g., glutathione peroxidase, thioredoxin reductase) and the enzymes that convert one thyroid hormone to another. Se-methyl-L-selenocysteine (MSC) is one of the organic forms of selenium: Most of the selenium found in Allium (e.g., garlic, leeks, onions) and Brassica (e.g., broccoli, cannage, cauliflower) species is MSC[4,5]. Selenium’s name derives from the ancient Greek word for moon—selḗnē. 

NEUROHACKER’S SELENIUM SOURCING

Se-methyl-L-selenocysteine is a bioavailable and safe organic form (i.e., one of the forms found in foods) of selenium. It can be used in the selenium-containing proteins that cells need to stay healthy.

Se-methyl-L-selenocysteine is produced by Sabinsa.

Se-methyl-L-selenocysteine is GRAS, non-GMO, gluten-free, Halal, and vegan.

SELENIUM DOSING PRINCIPLES AND RATIONALE

We chose Se-methyl-L-selenocysteine because it (1) is one of the bioavailable forms of selenium, (2) can be converted into selenium-containing proteins, and (3) may be the best form of selenium for helping cells counter changes caused by cellular stress and aging. To ensure against inadequacy, in the United States the recommended dietary allowance (RDA) of selenium for adults is currently set at 55 mcg (ug) per day, which is an amount sufficient to support selenoprotein levels in healthy adults. Selenium follows hormetic principles (see Neurohacker Dosing Principles). The key point is that selenium is not a “more is better” trace mineral—the tolerable upper limit for adults has been set at 400 mcg per day. When determining the dose of selenium to include in a product, our goal is to ensure we’ve supplied an amount consistent with the product’s goals while being within the hormetic range. If the product is intended to be supplemented for extended periods of time in healthy adults, who would be expected to have adequate selenium status, we believe that the dose used should be an amount on the lower end of the range (i.e., the RDA amount).

SELENIUM KEY MECHANISMS

Immune function

  • Supports general immune health[1,6–10]
  • Supports innate immunity[11–16]
  • Supports adaptive immunity[7,8,11–15,17]
  • Supports immune tolerance[18–38] 
  • Supports immune signaling[39–41]   
  • Supports healthy natural killer cell function[11–16,42–44]
  • Supports healthy macrophage function[45–47]   
  • Supports healthy microglial function[48,49]
  • Supports healthy neutrophil function[50–58]
  • Supports healthy mast cell function[59–61]  
  • Supports healthy T cell function[8,11–15,17]
  • Supports healthy B cell function[8,60]

Thyroid function

  • Supports thyroid function[19–21,23–37,62]

Gut microbiota

  • Supports a healthy gut microbiota[63–65]

Healthy aging

  • Supports Healthspan (Caenorhabditis elegans)[66,67]
  • Supports mitochondrial function[68–74]
  • Supports Nrf2[75–84]
  • Supports antioxidant defenses[2]
  • Supports sirtuin activity[85]
  • Supports circadian function[85–87]

Synergies

  • Zinc in supporting immunity[10,88]
  • Zinc, vitamin C and E, and beta-carotene for cognitive function during aging[89]

REFERENCES

[1] J.C. Avery, P.R. Hoffmann, Nutrients 10 (2018).
[2] M.P. Rayman, Lancet 379 (2012) 1256–1268.
[3] C.D. Thomson, A. Chisholm, S.K. McLachlan, J.M. Campbell, Am. J. Clin. Nutr. 87 (2008) 379–384.
[4] M.P. Rayman, H.G. Infante, M. Sargent, Br. J. Nutr. 100 (2008) 238–253.
[5] M. Montes-Bayón, M.J.D. Molet, E.B. González, A. Sanz-Medel, Talanta 68 (2006) 1287–1293.
[6] A.J. Goldson, S.J. Fairweather-Tait, C.N. Armah, Y. Bao, M.R. Broadley, J.R. Dainty, C. Furniss, D.J. Hart, B. Teucher, R. Hurst, PLoS One 6 (2011) e14771.
[7] C.S. Broome, F. McArdle, J.A.M. Kyle, F. Andrews, N.M. Lowe, C.A. Hart, J.R. Arthur, M.J. Jackson, Am. J. Clin. Nutr. 80 (2004) 154–162.
[8] W.C. Hawkes, D.S. Kelley, P.C. Taylor, Biol. Trace Elem. Res. 81 (2001) 189–213.
[9] O.M. Guillin, C. Vindry, T. Ohlmann, L. Chavatte, Nutrients 11 (2019).
[10] M.A. Johnson, K.H. Porter, Nutr. Rev. 55 (1997) 400–404.
[11] W.C. Hawkes, D. Richter, Z. Alkan, Biol. Trace Elem. Res. 155 (2013) 201–208.
[12] L. Kiremidjian-Schumacher, M. Roy, H.I. Wishe, M.W. Cohen, G. Stotzky, Biol. Trace Elem. Res. 41 (1994) 115.
[13] W.C. Hawkes, A. Hwang, Z. Alkan, J. Trace Elem. Med. Biol. 23 (2009) 272–280.
[14] N.G. Ilbäck, J. Fohlman, G. Friman, Biol. Trace Elem. Res. 63 (1998) 51–66.
[15] H.T. Petrie, L.W. Klassen, P.S. Klassen, J.R. O’Dell, H.D. Kay, J. Leukoc. Biol. 45 (1989) 215–220.
[16] L. Kiremidjian-Schumacher, M. Roy, H.I. Wishe, M.W. Cohen, G. Stotzky, Biol. Trace Elem. Res. 52 (1996) 227–239.
[17] F.W. Hoffmann, A.C. Hashimoto, L.A. Shafer, S. Dow, M.J. Berry, P.R. Hoffmann, J. Nutr. 140 (2010) 1155–1161.
[18] M. Sahebari, Z. Rezaieyazdi, M. Khodashahi, Curr. Rheumatol. Rev. 15 (2019) 123–134.
[19] I. Pirola, M. Rotondi, A. Cristiano, F. Maffezzoni, D. Pasquali, F. Marini, F. Coperchini, M. Paganelli, P. Apostoli, L. Chiovato, A. Ferlin, C. Cappelli, Endocrinol Diabetes Nutr 67 (2020) 28–35.
[20] G. Mantovani, A.M. Isidori, C. Moretti, C. Di Dato, E. Greco, P. Ciolli, M. Bonomi, L. Petrone, A. Fumarola, G. Campagna, G. Vannucchi, S. Di Sante, C. Pozza, A. Faggiano, A. Lenzi, E. Giannetta, Endocrine 66 (2019) 542–550.
[21] R. Krysiak, K. Kowalcze, B. Okopień, J. Clin. Pharmacol. 59 (2019) 1477–1484.
[22] C. Soni, I. Sinha, M.J. Fasnacht, N.J. Olsen, Z.S.M. Rahman, R. Sinha, Autoimmunity 52 (2019) 57–68.
[23] R. Krysiak, K. Kowalcze, B. Okopień, Pharmacol. Rep. 71 (2019) 367–373.
[24] R. Krysiak, W. Szkróbka, B. Okopień, Pharmacol. Rep. 71 (2019) 243–247.
[25] W. Wang, J. Mao, J. Zhao, J. Lu, L. Yan, J. Du, Z. Lu, H. Wang, M. Xu, X. Bai, L. Zhu, C. Fan, H. Wang, H. Zhang, Z. Shan, W. Teng, Thyroid 28 (2018) 1674–1681.
[26] I. Kyrgios, S. Giza, E.P. Kotanidou, A. Kleisarchaki, V.R. Tsinopoulou, A. Papadopoulou, A.-M. Markantonatou, E. Kanellidou, A. Giannakou, A. Galli-Tsinopoulou, J. Clin. Pharm. Ther. 44 (2019) 102–108.
[27] F. Karimi, G.R. Omrani, J. Endocrinol. Invest. 42 (2019) 481–487.
[28] A. Kachouei, H. Rezvanian, M. Amini, A. Aminorroaya, E. Moradi, Adv. Biomed. Res. 7 (2018) 1.
[29] M. Nordio, S. Basciani, Eur. Rev. Med. Pharmacol. Sci. 21 (2017) 51–59.
[30] S.M. Ferrari, P. Fallahi, F. Di Bari, R. Vita, S. Benvenga, A. Antonelli, Eur. Rev. Med. Pharmacol. Sci. 21 (2017) 36–42.
[31] M. Nordio, S. Basciani, Int. J. Endocrinol. 2017 (2017) 2549491.
[32] I. Pirola, E. Gandossi, B. Agosti, A. Delbarba, C. Cappelli, Endokrynol. Pol. 67 (2016) 567–571.
[33] J. Mao, V.J. Pop, S.C. Bath, H.L. Vader, C.W.G. Redman, M.P. Rayman, Eur. J. Nutr. 55 (2016) 55–61.
[34] M. Nordio, R. Pajalich, J. Thyroid Res. 2013 (2013) 424163.
[35] O. Turker, K. Kumanlioglu, I. Karapolat, I. Dogan, J. Endocrinol. 190 (2006) 151–156.
[36] J.R. O’Dell, J.P. McGivern, H.D. Kay, L.W. Klassen, Clin. Exp. Immunol. 73 (1988) 322–327.
[37] L.-X. Sang, B. Chang, J.-F. Zhu, F.-L. Yang, Y. Li, X.-F. Jiang, D.-N. Wang, C.-L. Lu, X. Sun, World J. Gastroenterol. 23 (2017) 3850–3863.
[38] H. Xue, W. Wang, Y. Li, Z. Shan, Y. Li, X. Teng, Y. Gao, C. Fan, W. Teng, Endocr. J. 57 (2010) 595–601.
[39] J. Kim, J. Ahn, Biol. Trace Elem. Res. 157 (2014) 101–106.
[40] B. Bao, A.S. Prasad, F.W.J. Beck, J.T. Fitzgerald, D. Snell, G.W. Bao, T. Singh, L.J. Cardozo, Am. J. Clin. Nutr. 91 (2010) 1634–1641.
[41] F. Marcellini, C. Giuli, R. Papa, C. Gagliardi, G. Dedoussis, D. Monti, J. Jajte, R. Giacconi, M. Malavolta, E. Mocchegiani, Rejuvenation Res. 11 (2008) 479–483.
[42] S.M. Wood, C. Beckham1, A. Yosioka2, H. Darban3, R.R. Watson, Integr. Med. 2 (2000) 85–92.
[43] A. Dhur, P. Galan, S. Hercberg, Comp. Biochem. Physiol. C 96 (1990) 271–280.
[44] L.D. Koller, J.H. Exon, P.A. Talcott, C.A. Osborne, G.M. Henningsen, Clin. Exp. Immunol. 63 (1986) 570–576.
[45] J. Xu, Y. Gong, Y. Sun, J. Cai, Q. Liu, J. Bao, J. Yang, Z. Zhang, Biol. Trace Elem. Res. 194 (2020) 237–243.
[46] M. Aribi, W. Meziane, S. Habi, Y. Boulatika, H. Marchandin, J.-L. Aymeric, PLoS One 10 (2015) e0135515.
[47] Z. Niu, F. Liu, Q. Yan, L. Li, Arch. Anim. Nutr. 63 (2009) 56–65.
[48] Z.-H. Zhang, L. Wen, Q.-Y. Wu, C. Chen, R. Zheng, Q. Liu, J.-Z. Ni, G.-L. Song, J. Agric. Food Chem. 65 (2017) 4970–4979.
[49] L. Dalla Puppa, N.E. Savaskan, A.U. Bräuer, D. Behne, A. Kyriakopoulos, Ann. N. Y. Acad. Sci. 1096 (2007) 179–183.
[50] S. Lee, I. Takahashi, M. Matsuzaka, K. Yamai, K. Danjo, T. Kumagai, T. Umeda, K. Itai, S. Nakaji, Biol. Trace Elem. Res. 144 (2011) 396–406.
[51] J.B. Montgomery, J.J. Wichtel, M.G. Wichtel, M.A. McNiven, J.T. McClure, F. Markham, D.W. Horohov, Can. J. Vet. Res. 76 (2012) 281–291.
[52] E.S. Aziz, P.H. Klesius, J.C. Frandsen, Am. J. Vet. Res. 45 (1984) 1715–1718.
[53] S.A. Köse, M. Nazıroğlu, Biol. Trace Elem. Res. 158 (2014) 136–142.
[54] E. Greenman, M.J. Phillipich, C.J. Meyer, L.J. Charamella, N.V. Dimitrov, Anticancer Res. 8 (1988) 825–828.
[55] A.E. Ibeagha, E.M. Ibeagha-Awemu, J. Mehrzad, B. Baurhoo, P. Kgwatalala, X. Zhao, Animal 3 (2009) 1037–1043.
[56] W. Mei, Z.M. Dong, B.L. Liao, H.B. Xu, Biol. Trace Elem. Res. 28 (1991) 11–19.
[57] K.C. Rocha, M.L.D.S. Vieira, R.L. Beltrame, J. Cartum, S.I.P.M. do N. Alves, L.A. Azzalis, V.B.C. Junqueira, E.C. Pereira, F.L.A. Fonseca, J. Med. Food 19 (2016) 560–568.
[58] R. Kukreja, A. Khan, Indian J. Biochem. Biophys. 31 (1994) 427–429.
[59] R. Safaralizadeh, M. Nourizadeh, A. Zare, G.A. Kardar, Z. Pourpak, Biol. Trace Elem. Res. 154 (2013) 299–303.
[60] F. Gazdik, M. Horvathova, K. Gazdikova, E. Jahnova, Bratisl. Lek. Listy 103 (2002) 17–21.
[61] T. Arakawa, H. Okubo, M. Mae, T. Okuno, H. Ogino, H. Ueno, Biol. Pharm. Bull. 42 (2019) 1179–1184.
[62] K.H. Winther, S.J. Bonnema, F. Cold, B. Debrabant, M. Nybo, S. Cold, L. Hegedüs, Eur. J. Endocrinol. 172 (2015) 657–667.
[63] K. Takahashi, N. Suzuki, Y. Ogra, Food Chem. 319 (2020) 126537.
[64] Y. Liu, J. Ji, W. Zhang, Y. Suo, J. Zhao, X. Lin, L. Cui, B. Li, H. Hu, C. Chen, Y.-F. Li, Ecotoxicol. Environ. Saf. 185 (2019) 109720.
[65] M.V. Kasaikina, M.A. Kravtsova, B.C. Lee, J. Seravalli, D.A. Peterson, J. Walter, R. Legge, A.K. Benson, D.L. Hatfield, V.N. Gladyshev, FASEB J. 25 (2011) 2492–2499.
[66] J.-S. Kim, S.-H. Kim, S.-K. Park, Clinics 72 (2017) 491–498.
[67] S.-H. Kim, B.-K. Kim, S.-K. Park, Mol. Med. Rep. 18 (2018) 5389–5398.
[68] Y. Farbood, A. Sarkaki, M. Mahdavinia, A. Ghadiri, A. Teimoori, F. Seif, M.A. Dehghani, S.P. Navabi, Neurotox. Res. 38 (2020) 398–407.
[69] O.L. Adebayo, G.A. Adenuga, R. Sandhir, Life Sci. 152 (2016) 145–155.
[70] M.L. Gheorghiu, C. Badiu, Hormones 19 (2020) 25–30.
[71] S.H. White, S. Wohlgemuth, C. Li, L.K. Warren, J. Anim. Sci. 95 (2017) 4078–4084.
[72] S.L. Mehta, S. Kumari, N. Mendelev, P.A. Li, BMC Neurosci. 13 (2012) 79.
[73] X. Peng, H. Cui, J. Yuan, W. Cui, J. Fang, Z. Zuo, J. Deng, K. Pan, Y. Zhou, W. Lai, Biol. Trace Elem. Res. 144 (2011) 688–694.
[74] A.J. Zamora, F. Tessier, P. Marconnet, I. Margaritis, J.F. Marini, Eur. J. Appl. Physiol. Occup. Physiol. 71 (1995) 505–511.
[75] D. Bartolini, K.D. Tew, R. Marinelli, F. Galli, G.Y. Wang, Biofactors 46 (2020) 239–245.
[76] R. Brigelius-Flohé, A.P. Kipp, Methods Enzymol. 527 (2013) 65–86.
[77] C. Zhang, J. Lin, J. Ge, L.-L. Wang, N. Li, X.-T. Sun, H.-B. Cao, J.-L. Li, Toxicol. In Vitro 44 (2017) 349–356.
[78] L. Liu, C. Wu, D. Chen, B. Yu, Z. Huang, Y. Luo, P. Zheng, X. Mao, J. Yu, J. Luo, H. Yan, J. He, Oxid. Med. Cell. Longev. 2020 (2020) 5490743.
[79] R. Tindell, S.B. Wall, Q. Li, R. Li, K. Dunigan, R. Wood, T.E. Tipple, Redox Biol 19 (2018) 331–338.
[80] Y. Zakharia, A. Bhattacharya, Y.M. Rustum, Oncotarget 9 (2018) 10765–10783.
[81] K. Li, Z. Cao, Y. Guo, C. Tong, S. Yang, M. Long, P. Li, J. He, Oxid. Med. Cell. Longev. 2020 (2020) 4048706.
[82] P. Li, K. Li, C. Zou, C. Tong, L. Sun, Z. Cao, S. Yang, Q. Lyu, Toxins 12 (2020).
[83] M. Schwarz, K. Lossow, J.F. Kopp, T. Schwerdtle, A.P. Kipp, Nutrients 11 (2019).
[84] E. Reszka, E. Wieczorek, E. Jablonska, B. Janasik, W. Fendler, W. Wasowicz, J. Trace Elem. Med. Biol. 30 (2015) 102–106.
[85] M. Fang, W.-R. Guo, Y. Park, H.-G. Kang, H. Zarbl, Oncotarget 6 (2015) 42879–42891.
[86] M.Z. Fang, X. Zhang, H. Zarbl, Cancer Prev. Res. 3 (2010) 640–652.
[87] X. Zhang, H. Zarbl, Cancer Prev. Res. 1 (2008) 119–127.
[88] F. Girodon, P. Galan, A.-L. Monget, M.-C. Boutron-Ruault, P. Brunet-Lecomte, P. Preziosi, J. Arnaud, J.-C. Manuguerra, S. Hercberg, Arch. Intern. Med. 159 (1999) 748–754.
[89] E. Kesse-Guyot, L. Fezeu, C. Jeandel, M. Ferry, V. Andreeva, H. Amieva, S. Hercberg, P. Galan, Am. J. Clin. Nutr. 94 (2011) 892–899.



Zinc Gluconate

COMMON NAME

Zinc gluconate

TOP BENEFITS OF ZINC GLUCONATE 

  • Supports general immune health*
  • Supports upper respiratory health*
  • Supports eye health*

WHAT IS ZINC GLUCONATE?

Zinc (Zn) has been recognized as an essential trace mineral since 1963; it is used in over 300 enzymes and a large number of transcription factors (i.e., genes that regulate other genes)[6][7][8]. There are roughly 2–4 grams of zinc distributed throughout the human body in tissues including the adrenal glands, brain, eyes, muscle, pancreas, bones, kidney, and liver[1]. Zinc plays roles in a variety of functions required for health, including antioxidant defenses, brain function, metabolic function, and men’s and women’s health functions[2]. Zinc also plays an important role in immune function—it supports cells of both innate and adaptive immunity and is needed for mucosal immunity, immune tolerance, and immune communication[3,4]. Inadequate intake of zinc is fairly common[5]. Even mild to moderate zinc inadequacy can impair healthy immune cell function[4,6,7]. Good food sources of zinc include oysters, fish, poultry, meat, wheat germ, molasses, legumes, nuts, and seeds. Zinc may also be fortified into cereal grains in developed countries.[5] Circumstances associated with a higher risk of poor zinc status include intense exercise, a vegetarian diet, high alcohol intake, older age, and gastrointestinal disturbance. A variety of zinc compounds are used as dietary supplements. Zinc gluconate is considered to be one of the better absorbed forms of zinc and has been used extensively in studies for general immune health. It is a zinc salt of gluconic acid composed of two gluconic acid molecules for each zinc cation (Zn2+).

NEUROHACKER’S ZINC GLUCONATE SOURCING

Zinc gluconate is a bioavailable form of zinc that has been used in a number of human clinical studies. It has been regularly used in human studies for immune support.

Zinc gluconate is GRAS, non-GMO, gluten-free, and vegan.

ZINC GLUCONATE DOSING PRINCIPLES AND RATIONALE

We chose zinc gluconate because it is one of the better-absorbed forms of zinc—it can increase serum and erythrocytic stores of Zinc in healthy persons[8]—and is the most studied form of zinc for immune support. To ensure against inadequacy, in the United States the recommended dietary allowance of zinc for adults is currently set at 8 mg per day for women, and 11 mg per day for men—11 mg is considered 100% of the daily value (DV) for supplement labeling. This represents a decrease from the prior DV of 15 mg per day. Because the 15 mg DV for zinc was in place for many years, it's common to find studies that supplemented 15 grams (or more) of zinc. Zinc follows hormetic principles (see Neurohacker Dosing Principles). The key point is that zinc is not a “more is better” trace mineral—the tolerable upper limit for adults has been set at 40 mg per day. When determining the dose of zinc to include in a product, our goal is to ensure we’ve supplied an amount that would be consistent with the product’s goals while being within the hormetic range.

Note: Zinc gluconate is 14.3% elemental zinc by weight, so 100 mg of zinc gluconate provides about 14 mg of zinc. On Neurohacker Collective labels, the mg amount listed refers to the dosage of zinc, not the amount of zinc gluconate.

ZINC GLUCONATE KEY MECHANISMS

Immune function

  • Supports general immune health[9–16]
  • Supports innate immunity[17–20]
  • Supports adaptive immunity[10,11,21–23]
  • Supports mucosal immunity[24–26]    
  • Supports immune tolerance[27–37]
  • Supports immune signaling[38–43]
  • Supports healthy dendritic cell function[37,44]
  • Supports healthy neutrophil function[17]
  • Supports healthy macrophage function[3,18,45]
  • Supports healthy T cell function[7,10,11,21–23,46,47]
  • Supports healthy NK cell function[19,20,48,49] 
  • Supports healthy B cell function[10] 

Healthy aging

  • Supports Nrf2[50–62]
  • Supports redox homeostasis[63–65]
  • Supports antioxidant defenses[63–66]

Brain function

  • Supports a balanced mood[67–71]
  • Supports cognitive function[72,73]
  • Supports brain-derived neurotrophic factor (BDNF)[74–76]
  • Supports sleep[77–79]
  • Supports eye health[80–82]

Nutrient interactions

  • Selenium in supporting immunity[83,84]
  • In human research studies, it is not uncommon for small amounts of copper to be included when dosing zinc in amounts in excess of the tolerable upper limits. But in human studies where zinc has been supplemented in amounts close to the daily value levels, it is unusual to find copper supplemented in combination with zinc.
  • Large amounts of supplemental iron (greater than 25 mg) might decrease zinc absorption[85]

REFERENCES

[1] L. Rink, P. Gabriel, Proc. Nutr. Soc. 59 (2000) 541–552.
[2] C.T. Chasapis, A.C. Loutsidou, C.A. Spiliopoulou, M.E. Stefanidou, Arch. Toxicol. 86 (2012) 521–534.
[3] A.H. Shankar, A.S. Prasad, Am. J. Clin. Nutr. 68 (1998) 447S–463S.
[4] E.S. Wintergerst, S. Maggini, D.H. Hornig, Ann. Nutr. Metab. 51 (2007) 301–323.
[5] C.A. Reider, R.-Y. Chung, P.P. Devarshi, R.W. Grant, S. Hazels Mitmesser, Nutrients 12 (2020).
[6] A.S. Prasad, J. Infect. Dis. 182 Suppl 1 (2000) S62–8.
[7] F.W. Beck, A.S. Prasad, J. Kaplan, J.T. Fitzgerald, G.J. Brewer, Am. J. Physiol. 272 (1997) E1002–7.
[8] S.A. Barrie, J.V. Wright, J.E. Pizzorno, E. Kutter, P.C. Barron, Agents Actions 21 (1987) 223–228.
[9] D.V. Veverka, C. Wilson, M.A. Martinez, R. Wenger, A. Tamosuinas, Complement. Ther. Clin. Pract. 15 (2009) 91–95.
[10] J. Duchateau, G. Delepesse, R. Vrijens, H. Collet, Am. J. Med. 70 (1981) 1001–1004.
[11] S. Sazawal, S. Jalla, S. Mazumder, A. Sinha, R.E. Black, M.K. Bhan, Indian Pediatr. 34 (1997) 589–597.
[12] N.S. Martinez-Estevez, A.N. Alvarez-Guevara, C.E. Rodriguez-Martinez, Allergol. Immunopathol. 44 (2016) 368–375.
[13] R. Aggarwal, J. Sentz, M.A. Miller, Pediatrics 119 (2007) 1120–1130.
[14] U.H. Shah, A.K. Abu-Shaheen, M.A. Malik, S. Alam, M. Riaz, M.A. Al-Tannir, Clin. Nutr. 32 (2013) 193–199.
[15] A.S. Prasad, F.W.J. Beck, B. Bao, J.T. Fitzgerald, D.C. Snell, J.D. Steinberg, L.J. Cardozo, Am. J. Clin. Nutr. 85 (2007) 837–844.
[16] S. Sazawal, R.E. Black, S. Jalla, S. Mazumdar, A. Sinha, M.K. Bhan, Pediatrics 102 (1998) 1–5.
[17] A. Peretz, B. Cantinieaux, J. Nève, V. Siderova, P. Fondu, J. Trace Elem. Electrolytes Health Dis. 8 (1994) 189–194.
[18] J.E. Nowak, K. Harmon, C.C. Caldwell, H.R. Wong, Pediatr. Crit. Care Med. 13 (2012) e323–9.
[19] Z. Pang, Y.M. Wang, J. Zheng, Asia Pac. J. Clin. Nutr. 1 (1992) 95–100.
[20] C.H.D. Metz, A.K. Schröder, S. Overbeck, L. Kahmann, B. Plümäkers, L. Rink, Nutrition 23 (2007) 157–163.
[21] G. Mathé, J.L. Misset, M. Gil-Delgado, M. Musset, P. Reizenstein, C. Canon, Biomed. Pharmacother. 40 (1986) 383–385.
[22] J.B. Barnett, M.C. Dao, D.H. Hamer, R. Kandel, G. Brandeis, D. Wu, G.E. Dallal, P.F. Jacques, R. Schreiber, E. Kong, S.N. Meydani, Am. J. Clin. Nutr. 103 (2016) 942–951.
[23] C. Franceschi, M. Chiricolo, F. Licastro, M. Zannotti, M. Masi, E. Mocchegiani, N. Fabris, J. Ment. Defic. Res. 32 ( Pt 3) (1988) 169–181.
[24] C. Poiraud, G. Quereux, A.-C. Knol, T. Zuliani, R. Allix, A. Khammari, B. Dreno, Eur. J. Dermatol. 22 (2012) 634–639.
[25] W. Zhong, X. Wei, L. Hao, T.-D. Lin, R. Yue, X. Sun, W. Guo, H. Dong, T. Li, A.R. Ahmadi, Z. Sun, Q. Zhang, J. Zhao, Z. Zhou, Hepatology 71 (2020) 1575–1591.
[26] P. Kelly, R. Feakins, P. Domizio, J. Murphy, C. Bevins, J. Wilson, G. McPhail, R. Poulsom, W. Dhaliwal, Clin. Exp. Immunol. 135 (2004) 303–309.
[27] M. Maywald, F. Wang, L. Rink, J. Trace Elem. Med. Biol. 50 (2018) 482–488.
[28] E. Rosenkranz, R.-D. Hilgers, P. Uciechowski, A. Petersen, B. Plümäkers, L. Rink, Eur. J. Nutr. 56 (2017) 557–567.
[29] S.-Y. Lee, S.H. Lee, J. Jhun, H.-B. Seo, K.A. Jung, C.W. Yang, S.-H. Park, M.-L. Cho, J. Med. Food 21 (2018) 39–46.
[30] M. Maywald, L. Rink, Eur. J. Nutr. 56 (2017) 1859–1869.
[31] E. Rosenkranz, M. Maywald, R.-D. Hilgers, A. Brieger, T. Clarner, M. Kipp, B. Plümäkers, S. Meyer, T. Schwerdtle, L. Rink, J. Nutr. Biochem. 29 (2016) 116–123.
[32] D. Stoye, C. Schubert, A. Goihl, K. Guttek, A. Reinhold, S. Brocke, K. Grüngreiff, D. Reinhold, Biometals 25 (2012) 529–539.
[33] S. Dünkelberg, M. Maywald, A.K. Schmitt, T. Schwerdtle, S. Meyer, L. Rink, Mol. Nutr. Food Res. 64 (2020) e1900245.
[34] M. Maywald, F. Wang, L. Rink, Int. J. Mol. Sci. 19 (2018).
[35] L. Kulik, M. Maywald, V. Kloubert, I. Wessels, L. Rink, J. Nutr. Biochem. 63 (2019) 11–18.
[36] Y.L. Tsai, W.-S. Ko, J.-L. Hsiao, H.-H. Pan, Y.-L. Chiou, Clin. Respir. J. 12 (2018) 563–571.
[37] M.M. George, K. Subramanian Vignesh, J.A. Landero Figueroa, J.A. Caruso, G.S. Deepe Jr, J. Immunol. 197 (2016) 1864–1876.
[38] J. Kim, J. Ahn, Biol. Trace Elem. Res. 157 (2014) 101–106.
[39] I. Abdulhamid, F.W.J. Beck, S. Millard, X. Chen, A. Prasad, Pediatr. Pulmonol. 43 (2008) 281–287.
[40] M.S.B. de Moura, N.R.M. Soares, S.É. de L. Barros, F.A. de Pinho, T.M.C. Silva, D.C. Bráz, E.C. Vieira, M.M. Lima, J.M.L. Parente, D. do N. Marreiro, A.S. da Silva, N. do N. Nogueira, Biometals 33 (2020) 15–27.
[41] S.S. Yalçın, D. Engür-Karasimav, D. Alehan, K. Yurdakök, S. Ozkutlu, T. Coşkun, J. Trace Elem. Med. Biol. 25 (2011) 85–90.
[42] C.I. Morgan, J.R. Ledford, P. Zhou, K. Page, J. Inflamm. 8 (2011) 36.
[43] B. Bao, A.S. Prasad, F.W.J. Beck, J.T. Fitzgerald, D. Snell, G.W. Bao, T. Singh, L.J. Cardozo, Am. J. Clin. Nutr. 91 (2010) 1634–1641.
[44] A.S. Prasad, J. Am. Coll. Nutr. 28 (2009) 257–265.
[45] M.D. Lastra, R. Pastelin, A. Camacho, B. Monroy, A.E. Aguilar, J. Trace Elem. Med. Biol. 15 (2001) 5–10.
[46] L. Iovino, F. Mazziotta, G. Carulli, F. Guerrini, R. Morganti, V. Mazzotti, F. Maggi, L. Macera, E. Orciuolo, G. Buda, E. Benedetti, F. Caracciolo, S. Galimberti, M. Pistello, M. Petrini, Leuk. Res. 70 (2018) 20–24.
[47] A. Sheikh, S. Shamsuzzaman, S.M. Ahmad, D. Nasrin, S. Nahar, M.M. Alam, A. Al Tarique, Y.A. Begum, S.S. Qadri, M.I. Chowdhury, A. Saha, C.P. Larson, F. Qadri, J. Nutr. 140 (2010) 1049–1056.
[48] E. Mariani, S. Neri, L. Cattini, E. Mocchegiani, M. Malavolta, G.V. Dedoussis, S. Kanoni, L. Rink, J. Jajte, A. Facchini, Exp. Gerontol. 43 (2008) 462–471.
[49] W. Mei, Z.M. Dong, B.L. Liao, H.B. Xu, Biol. Trace Elem. Res. 28 (1991) 11–19.
[50] Z. Kaufman, G.A. Salvador, X. Liu, P.I. Oteiza, Free Radic. Biol. Med. 155 (2020) 1–9.
[51] Y. Wang, H. Zhao, Y. Liu, X. Nie, M. Xing, Fish Shellfish Immunol. 104 (2020) 383–390.
[52]     X. Lu, Q. Zhang, L. Xu, X. Lin, J. Fu, X. Wang, Y. Liu, Y. Lin, B. Li, R. Wang, L. Liu, X. Mi, H. Wei, Y. Tan, Y. Fang, Am. J. Physiol. Cell Physiol. 318 (2020) C640–C648.
[53] L. Gao, Y. Fan, X. Zhang, L. Yang, W. Huang, T. Hang, M. Li, S. Du, J. Ma, Mol. Med. Rep. 20 (2019) 655–663.
[54] T.-C. Huang, W.-T. Chang, Y.-C. Hu, B.-S. Hsieh, H.-L. Cheng, J.-H. Yen, P.-R. Chiu, K.-L. Chang, Nutrients 10 (2018).
[55] N.N. Omar, R.F. Tash, Pharmacol. Biochem. Behav. 160 (2017) 30–38.
[56] G.R. Romualdo, R.L. Goto, A.A. Henrique Fernandes, B. Cogliati, L.F. Barbisan, Food Chem. Toxicol. 96 (2016) 280–289.
[57] J. Chen, S. Wang, M. Luo, Z. Zhang, X. Dai, M. Kong, L. Cai, Y. Wang, B. Shi, Y. Tan, Toxicol. Sci. 153 (2016) 124–136.
[58] K.P. Maremanda, S. Khan, G. Jena, Biochem. Biophys. Res. Commun. 445 (2014) 591–596.
[59] X. Miao, Y. Wang, J. Sun, W. Sun, Y. Tan, L. Cai, Y. Zheng, G. Su, Q. Liu, Y. Wang, Cardiovasc. Diabetol. 12 (2013) 54.
[60] A.J. Mehta, P.C. Joshi, X. Fan, L.A.S. Brown, J.D. Ritzenthaler, J. Roman, D.M. Guidot, Alcohol. Clin. Exp. Res. 35 (2011) 1519–1528.
[61] M.M. Cortese, C.V. Suschek, W. Wetzel, K.-D. Kröncke, V. Kolb-Bachofen, Free Radic. Biol. Med. 44 (2008) 2002–2012.
[62] M. Schwarz, K. Lossow, J.F. Kopp, T. Schwerdtle, A.P. Kipp, Nutrients 11 (2019).
[63] P.I. Oteiza, Free Radic. Biol. Med. 53 (2012) 1748–1759.
[64] D. do N. Marreiro, K.J.C. Cruz, J.B.S. Morais, J.B. Beserra, J.S. Severo, A.R.S. de Oliveira, Antioxidants (Basel) 6 (2017).
[65] Y. Song, S.W. Leonard, M.G. Traber, E. Ho, J. Nutr. 139 (2009) 1626–1631.
[66] M.R. Nazem, M. Asadi, N. Jabbari, A. Allameh, Clin. Biochem. 69 (2019) 15–20.
[67] T. Sawada, K. Yokoi, Eur. J. Clin. Nutr. 64 (2010) 331–333.
[68] S. Siahbazi, S. Behboudi-Gandevani, L. Moghaddam-Banaem, A. Montazeri, J. Obstet. Gynaecol. Res. 43 (2017) 887–894.
[69] E. Ranjbar, J. Shams, M. Sabetkasaei, M. M-Shirazi, B. Rashidkhani, A. Mostafavi, E. Bornak, J. Nasrollahzadeh, Nutr. Neurosci. 17 (2014) 65–71.
[70] S. Yosaee, S. Soltani, A. Esteghamati, S.A. Motevalian, M. Tehrani-Doost, C.C.T. Clark, S. Jazayeri, Nutrition 71 (2020) 110601.
[71] W. Swardfager, N. Herrmann, R.S. McIntyre, G. Mazereeuw, K. Goldberger, D.S. Cha, Y. Schwartz, K.L. Lanctôt, Neurosci. Biobehav. Rev. 37 (2013) 911–929.
[72] R.P. Tupe, S.A. Chiplonkar, J. Am. Coll. Nutr. 28 (2009) 388–396.
[73] R. Aquilani, P. Baiardi, M. Scocchi, P. Iadarola, M. Verri, P. Sessarego, F. Boschi, E. Pasini, O. Pastoris, S. Viglio, Nutr. Neurosci. 12 (2009) 219–225.
[74] Z. Solati, S. Jazayeri, M. Tehrani-Doost, S. Mahmoodianfard, M.R. Gohari, Nutr. Neurosci. 18 (2015) 162–168.
[75] Y. Yang, X.-P. Jing, S.-P. Zhang, R.-X. Gu, F.-X. Tang, X.-L. Wang, Y. Xiong, M. Qiu, X.-Y. Sun, D. Ke, J.-Z. Wang, R. Liu, PLoS One 8 (2013) e55384.
[76] F. Jafari, R. Amani, M.J. Tarrahi, Biol. Trace Elem. Res. 194 (2020) 89–95.
[77] Y. Cherasse, H. Saito, N. Nagata, K. Aritake, M. Lazarus, Y. Urade, Mol. Nutr. Food Res. 59 (2015) 2087–2093.
[78] H. Saito, Y. Cherasse, R. Suzuki, M. Mitarai, F. Ueda, Y. Urade, Molecular Nutrition & Food Research 61 (2017) 1600882.
[79] Y. Cherasse, Y. Urade, Int. J. Mol. Sci. 18 (2017).
[80] D.A. Newsome, M. Swartz, N.C. Leone, R.C. Elston, E. Miller, Arch. Ophthalmol. 106 (1988) 192–198.
[81] Age-Related Eye Disease Study 2 Research Group, JAMA 309 (2013) 2005–2015.
[82] Age-Related Eye Disease Study Research Group, Arch. Ophthalmol. 119 (2001) 1417–1436.
[83] M.A. Johnson, K.H. Porter, Nutr. Rev. 55 (1997) 400–404.
[84] F. Girodon, P. Galan, A.-L. Monget, M.-C. Boutron-Ruault, P. Brunet-Lecomte, P. Preziosi, J. Arnaud, J.-C. Manuguerra, S. Hercberg, Arch. Intern. Med. 159 (1999) 748–754.
[85] Institute of Medicine, Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Subcommittee of Interpretation and Uses of Dietary Reference Intakes, Subcommittee on Upper Reference Levels of Nutrients, Panel on Micronutrients, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academies Press, 2002.

Magnesium Threonate

Scientific Name:
Magnesium (2R,3S)-2,3,4-Trihydroxybutanate

Overview:
Magnesium threonate is a salt of magnesium and L-Threonate with neuroprotective and nootropic effects. Magnesium threonate can significantly improve memory and learning.

Scientific Name:
Magnesium (2R,3S)-2,3,4-Trihydroxybutanate

Mechanisms:

  • L-Threonate significantly enhances the bioavailability of magnesium[1]
  • Magnesium inhibits the activation of NMDA receptors and blocks calcium channels, decreasing neuronal hyperexcitation and excititoxicity[2,3]
  • Magnesium can greatly improve both short and long-term memory and delay age-related memory impairment[4]
  • Can have anxiolytic effects and improve sleep quality[5,6]
  • Improves synaptic activity and plasticity[7]
  • Improves glucose metabolism and energy production[8]
  • May increase cerebrospinal fluid in the brain[9]
REFRENCES

[1] Slutsky I, et al (2010). Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010 Jan 28;65(2):165-77. doi: 10.1016/j.neuron.2009.12.026
[2] Johnson JW and Ascher P. (1990). Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophys J, 57(5):1085-90. doi: 10.1016/S0006-3495(90)82626-6
[3] Iseri LT & French JH (1984). Magnesium: nature’s physiologic calcium blocker. Am Heart J. 1984 Jul;108(1):188-93. doi: 10.1016/0002-8703(84)90572-6
[4] Billard JM (2006). Ageing, hippocampal synaptic activity and magnesium. Magnes Res, 19(3):199-215. doi: 10.1684/mrh.2006.0063
[5] Poleszak E, et al (2004). Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav, 78(1):7-12. doi: 10.1055/s-2002-33195
[6] Held K, et al (2002). Oral Mg(2+) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry, 35(4):135-43. doi: 10.1016/j.pbb.2004.01.006
[7] Slutsky I, et al (2004). Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron, 44(5):835-49. doi: 10.1016/j.neuron.2004.11.013
[8] Cinar V, et al (2008). The effect of magnesium supplementation on glucose and insulin levels of tae-kwan-do sportsmen and sedentary subjects. Pak J Pharm Sci, 21(3):237-40. PMID: 18614418
[9] Morris ME (1992). Brain and CSF magnesium concentrations during magnesium deficit in animals and humans: neurological symptoms. Magnes Res, 5(4):303-13. PMID: 1296767
[10] Köseoglu E, et al (2008). The effects of magnesium prophylaxis in migraine without aura. Magnes Res, 21(2):101-8. doi: 
10.1684/mrh.2008.0132

Lithium Orotate

Scientific Name:
Lithium 1,2,3,6-Tetrahydro-2,6-dioxo-4-pyrimidinecarboxylate

Overview:
Lithium orotate is a salt of orotic acid and lithium with neuroprotective effects. Lithium orotate can improve mood and may help preserve cognitive function.

Scientific Name:
Lithium 1,2,3,6-Tetrahydro-2,6-dioxo-4-pyrimidinecarboxylate

Mechanisms:

  • Lithium orotate provides lithium to the body[1]
  • Neuroprotective effects through inhibition of neuronal damaging proteins[3]
  • Increases the elimination of harmful toxic metals from the brain[4]
  • May increase gray matter[5]
  • Analgesic effect – decreases migraines[6]
References

[1] Smith DF & Schou M (1979). Kidney function and lithium concentrations of rats given an injection of lithium orotate or lithium carbonate. J Pharm Pharmacol, ;31(3):161-3. doi: 10.1111/j.2042-7158.1979.tb13461.x
[2] Oruch R, et al (2014). Lithium: a review of pharmacology, clinical uses, and toxicity. Eur J Pharmacol, 740:464-73. doi: 10.1016/j.ejphar.2014.06.042
[3] Vo TM, et al (2015). Is lithium a neuroprotective agent? Ann Clin Psychiatry, 27(1):49-54
[4] Moore GJ, et al (2000). Lithium-induced increase in human brain grey matter. Lancet, 356(9237):1241-2. doi: 10.1016/S0140-6736(00)02793-8
[5] Schettini G, et al (1992). Molecular mechanisms mediating the effects of L-alpha-glycerylphosphorylcholine, a new cognition-enhancing drug, on behavioral and biochemical parameters in young and aged rats. Pharmacol Biochem Behav, 43(1):139-51. doi: 10.1007/s10571-008-9343-5
[6] Oedegaard KJ, et al (2000). Are migraine and bipolar disorders comorbid phenomena?: findings from a pharmacoepidemiological study using the Norwegian Prescription Database. J Clin Psychopharmacol, 31(6):734-9. doi: 10.1097/JCP.0b013e318235f4e9

Zinc Picolinate

Scientific Name:
Zinc pyridine-2-carboxylate

Overview:
Zinc picolinate is an acid form of zinc with neuroprotective effects. Zinc picolinate helps improve memory and mood.

Scientific Name:
Zinc pyridine-2-carboxylate

Mechanisms:

  • Picolinate increases the absorption of the essential nutrient zinc[1]
  • Zinc is a potent antioxidant, an anti-inflammatory, and an immunity enhancer[2]
  • Is found in the cerebral cortex, pineal gland, and hippocampus and has a neuromodulatory function[3]
  • Zinc is as cofactor for many metalloproteins, namely the enzyme superoxide dismustase, an important endogenous antioxidant[4]
  • Activates neuronal potassium channels, inhibits NMDA glutamate receptors, and decreases glutamate release[5,6]
  • Increases serotonin uptake in some brain regions[7]
  • May increase the production of BDNF – neuronal growth and plasticity, improved spatial memory effect[5,6]
  • Inhibits glycogen synthase kinase-3β[8]

REFERENCES

[1] Barrie SA, et al (1987). Comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humans. Agents Actions, 21(1-2):223-8. PMID: 3630857
[2] Chasapis CT, et al (2012). Zinc and human health: an update. Arch Toxicol, 86(4):521-34. doi: 10.1007/s00204-011-0775-1
[3] Popescu BF & Nichol H (2010). Mapping brain metals to evaluate therapies for neurodegenerative disease. CNS Neurosci Ther, 17(4):256-68. doi: 10.1111/j.1755-5949.2010.00149.x
[4] Oteiza PI (2012). Zinc and the modulation of redox homeostasis. Free Radic Biol Med, 53(9):1748-59. doi: 10.1016/j.freeradbiomed.2012.08.568
[5] Sensi SL, et al (2009). Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci, 10(11):780-91. doi: 10.1038/nrn2734
[6] Sensi SL, et al (2011). The neurophysiology and pathology of brain zinc. J Neurosci, 31(45):16076-85. doi: 10.1523/JNEUROSCI.3454-11.2011
[7] Levenson CW (2006). Zinc: the new antidepressant? Nutr Rev, 64(1):39-42. doi: 10.1111/j.1753-4887.2006.tb00171.x
[8] Ilouz R, et al (2002). Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun, 295(1):102-6. doi: 
10.1016/S0006-291X(02)00636-8