Olive Leaf Extract


Supports healthy aging *

Supports cellular health *

Supports healthy brain function *

Supports healthy cardiometabolic function *



The olive is a small tree or shrub native to the Mediterranean region. Its fruit, also called olive, is the source of olive oil, one of the main ingredients of Mediterranean cuisines and one of the healthiest culinary fats. Olive leaves, fruits and oils are all rich in bioactive ingredients, including polyphenols, but different parts of the plant have different relative amounts of certain compounds, such as hydroxytyrosol and oleuropein, the most abundant and more extensively studied olive polyphenols. Oleuropein is found in higher amounts in leaf extracts, while hydroxytyrosol is in higher amounts in fruit extracts. Oleuropein belongs to a specific group of polyphenols called secoiridoids. Oleuropein has a number of biological activities that are believed to contribute to the reported benefits of olive oil consumption for brain, cardiovascular, and metabolic health.* 


Olive Leaf Extract is standardized to contain not less than 40% oleuropein.

Olive Leaf Extract is non-GMO, gluten-free, and vegan.


We included  Olive Leaf keeping in mind the amount of oleuropein that will be provided in the standardized extract (the extract is 40% oleuropein). In clinical trials, Olive Leaf Extracts have been used at servings ranging from 500 mg to 1600 mg/day, providing oleuropein at amounts ranging from around 50 mg to around 140 mg/day [1–4]. We chose a recommended serving of Olive Leaf Extract to supply an amount of oleuropein consistent with those supplied by standardized extracts in clinical trials. We expect this amount to complement other ingredients in Qualia Senolytic. Our goal with Olive Leaf Extract, as with all ingredient choices, is to select the recommended serving keeping in mind both the ingredient and the other ingredients being used in a formulation.*


Supports brain function*

Supports spatial working memory (aged mice)* [5]

Supports brain ATP levels (aged mice)* [5]

Supports cognitive function* [6–10]

Supports neuroprotective functions* [7,11–14]

Supports BBB structure* [11]

Supports antioxidant defenses and counters oxidative stress* [6,8,10,11,13,15]

Supports neural autophagy* [7,9,16]

Supports LTP* [17]

Influences neural apoptosis* [14,18,19]

Influences microglia and astrocyte activation* [9]

Supports neural mitochondrial function* [20]

Supports Nrf2 signaling* [20]

Supports brain microvasculature* [21]

Supports cardiometabolic health*

Supports cardiovascular health* [1–3]

Supports healthy insulin signaling* [4]

Supports glucose homeostasis* [22]

Promotes healthy aging and longevity*

Supports stem cell differentiation* [23]

Supports anti-senescence mechanisms* [23–25]

Supports immune signaling* [24,25]

Supports autophagy* [26–31]

Supports cellular signaling* 

Influences NF-κB signaling* [23,24]

Influences mTOR signaling* [27]

Influences AMPK signaling* [27,29]

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


[1]S. Lockyer, I. Rowland, J.P.E. Spencer, P. Yaqoob, W. Stonehouse, Eur. J. Nutr. 56 (2017) 1421–1432.

[2]E. Susalit, N. Agus, I. Effendi, R.R. Tjandrawinata, D. Nofiarny, T. Perrinjaquet-Moccetti, M. Verbruggen, Phytomedicine 18 (2011) 251–258.

[3]S. Lockyer, G. Corona, P. Yaqoob, J.P.E. Spencer, I. Rowland, Br. J. Nutr. 114 (2015) 75–83.

[4]M. de Bock, J.G.B. Derraik, C.M. Brennan, J.B. Biggs, P.E. Morgan, S.C. Hodgkinson, P.L. Hofman, W.S. Cutfield, PLoS One 8 (2013) e57622.

[5]M. Reutzel, R. Grewal, C. Silaidos, J. Zotzel, S. Marx, J. Tretzel, G.P. Eckert, Oxid. Med. Cell. Longev. 2018 (2018) 4070935.

[6]F. Shibani, A. Sahamsizadeh, I. Fatemi, M. Allahtavakoli, J. Hasanshahi, M. Rahmani, M. Azin, M. Hassanipour, N. Mozafari, A. Kaeidi, Naunyn. Schmiedebergs. Arch. Pharmacol. 392 (2019) 1383–1391.

[7]D. Pantano, I. Luccarini, P. Nardiello, M. Servili, M. Stefani, F. Casamenti, Br. J. Clin. Pharmacol. 83 (2017) 54–62.

[8]M. Alirezaei, M. Rezaei, S. Hajighahramani, A. Sookhtehzari, K. Kiani, J. Physiol. Sci. 67 (2017) 131–139.

[9]C. Grossi, S. Rigacci, S. Ambrosini, T. Ed Dami, I. Luccarini, C. Traini, P. Failli, A. Berti, F. Casamenti, M. Stefani, PLoS One 8 (2013) e71702.

[10]S. Pourkhodadad, M. Alirezaei, M. Moghaddasi, H. Ahmadvand, M. Karami, B. Delfan, Z. Khanipour, J. Physiol. Sci. 66 (2016) 397–405.

[11]J. Shi, G. Wu, X. Zou, K. Jiang, Pharmacol. Rep. 69 (2017) 1206–1212.

[12]I. Luccarini, T. Ed Dami, C. Grossi, S. Rigacci, M. Stefani, F. Casamenti, Neurosci. Lett. 558 (2014) 67–72.

[13]K. Mnafgui, L. Ghazouani, R. Hajji, A. Tlili, F. Derbali, F.I. da Silva, J.L. Araújo, B. de Oliveira Schinoff, J.F.R. Bachega, A.L. da Silva Santos, N. Allouche, Neurochem. Res. 46 (2021) 2131–2142.

[14]H. Yu, P. Liu, H. Tang, J. Jing, X. Lv, L. Chen, L. Jiang, J. Xu, J. Li, Eur. J. Pharmacol. 775 (2016) 113–119.

[15]M. Rizzo, D. Ventrice, F. Giannetto, S. Cirinnà, N.A. Santagati, A. Procopio, V. Mollace, C. Muscoli, J. Pharm. Pharmacol. 69 (2017) 1502–1512.

[16]I. Achour, A.-M. Arel-Dubeau, J. Renaud, M. Legrand, E. Attard, M. Germain, M.-G. Martinoli, Int. J. Mol. Sci. 17 (2016).

[17]M. Wang, V.S. Ramasamy, H.K. Kang, J. Jo, Neuropharmacology 176 (2020) 108196.

[18]W. Zhang, X. Liu, Q. Li, Med. Sci. Monit. 24 (2018) 6587–6598.

[19]A.R. Khalatbary, E. Ghaffari, B. Mohammadnegad, Iran. Biomed. J. 19 (2015) 247–253.

[20]W. Sun, X. Wang, C. Hou, L. Yang, H. Li, J. Guo, C. Huo, M. Wang, Y. Miao, J. Liu, Y. Kang, Neuropharmacology 113 (2017) 556–566.

[21]D. Lapi, M. Di Maro, T. Mastantuono, L. Battiloro, L. Sabatino, E. Muscariello, A. Colantuoni, Microcirculation 22 (2015) 79–90.

[22]J. Wainstein, T. Ganz, M. Boaz, Y. Bar Dayan, E. Dolev, Z. Kerem, Z. Madar, J. Med. Food 15 (2012) 605–610.

[23]M. Varela-Eirín, P. Carpintero-Fernández, A. Sánchez-Temprano, A. Varela-Vázquez, C.L. Paíno, A. Casado-Díaz, A.C. Continente, V. Mato, E. Fonseca, M. Kandouz, A. Blanco, J.R. Caeiro, M.D. Mayán, Aging 12 (2020) 15882–15905.

[24]B. Menicacci, C. Cipriani, F. Margheri, A. Mocali, L. Giovannelli, Int. J. Mol. Sci. 18 (2017).

[25]S. Jeon, M. Choi, Biomedical Dermatology 2 (2018) 21.

[26]H.-Y. Lu, J.-S. Zhu, J. Xie, Z. Zhang, J. Zhu, S. Jiang, W.-J. Shen, B. Wu, T. Ding, S.-L. Wang, Nutr. Cancer 73 (2021) 350–360.

[27]S. Rigacci, C. Miceli, C. Nediani, A. Berti, R. Cascella, D. Pantano, P. Nardiello, I. Luccarini, F. Casamenti, M. Stefani, Oncotarget 6 (2015) 35344–35357.

[28]C. Miceli, Y. Santin, N. Manzella, R. Coppini, A. Berti, M. Stefani, A. Parini, J. Mialet-Perez, C. Nediani, Oxid. Med. Cell. Longev. 2018 (2018) 8067592.

[29]C. Porcu, S. Sideri, M. Martini, A. Cocomazzi, A. Galli, G. Tarantino, C. Balsano, Int. J. Mol. Sci. 19 (2018).

[30]H.-Y. Lu, J.-S. Zhu, Z. Zhang, W.-J. Shen, S. Jiang, Y.-F. Long, B. Wu, T. Ding, F. Huan, S.-L. Wang, Anticancer Agents Med. Chem. 19 (2019) 1983–1990.

[31]P. Przychodzen, R. Wyszkowska, M. Gorzynik-Debicka, T. Kostrzewa, A. Kuban-Jankowska, M. Gorska-Ponikowska, Anticancer Res. 39 (2019) 1243–1251.