Quercefit® Quercetin Phytosome

COMMON NAME

Quercetin Phytosome


TOP BENEFITS OF QUERCEFIT® QUERCETIN PHYTOSOME

Supports healthy aging*

Supports antioxidant defenses*

Supports cellular health*


WHAT IS QUERCEFIT® QUERCETIN PHYTOSOME?

Quercefit® is Indena’s unique Phytosome® formulation of quercetin. Some ingredients—quercetin is one of them—are very poorly absorbed. Indena’s Phytosome® technology creates a quercetin phytosome complex using sunflower lecithin, resulting in dramatically enhanced bioavailability* [1]. The result, as Indena likes to say, is “Quercetin, made better.” But what is quercetin? Quercetin is a yellow plant pigment. Its name is derived from the Latin work for oak forest—quercetum—because it was originally identified in oaks. Quercetin is a flavonol, which is one of the polyphenol categories. Polyphenols play important roles in the plant kingdom. One of these roles is protecting plants from environmental stress such as pests and UV irradiation from the sun. Because of this role, they tend to concentrate in parts of the plant that come into more contact with the outside world. Red onions are one of the better food sources of quercetin. But the quercetin isn’t uniformly spread through red onions; it concentrates in the outer skins (which are usually thrown away when onions are peeled before use) and the part closest to the root. Capers may be the best dietary source of quercetin. 

 

NEUROHACKER’S QUERCEFIT® QUERCETIN PHYTOSOME SOURCING

Quercefit® is a sunflower lecithin formulation of quercetin (Quercetin Phytosome®) containing 34-42% quercetin obtained from flower buds of Sophora japonica L. 

Quercefit® has shown up to 20-fold more bioavailability than unformulated quercetin [1].

Quercefit® is a registered trademark of Indena S.p.A.

Quercefit® is non-GMO, gluten-free, and vegan. 


QUERCEFIT® QUERCETIN PHYTOSOME DOSING PRINCIPLES AND RATIONALE

We chose the recommended dose of Quercefit® taking into account several different factors. The primary factor was how quercetin in general, and Quercefit® specifically, are being dosed as a senolytic in clinical research. An example of this dosing is a planned clinical trial (ClinicalTrials.gov identifier NCT04313634) which is using a similar intermittent dosing protocol to what’s recommended for Qualia Senolytic. The trial is dosing Quercefit® at 1000 mg daily for several days. Our recommended dose selection also took into account that Qualia Senolytic contains several other ingredients which share some cellular function mechanisms with quercetin.* We opted for a slightly lower recommended daily dose of Quercefit® (750 mg per dose) to account for the contributions being made by these other ingredients.


QUERCETIN KEY MECHANISMS

Supports brain function*

Supports learning and memory [3–10]

Supports motor activity [6,8,11]

Supports non-rapid eye movement (non-REM) sleep [12]

Supports brain-derived neurotrophic factor (BDNF) [5,10,13–17]

Supports tryptophan hydroxylase (TPH) activity [8]

Supports serotonin synthesis/levels [8]

Downregulates MAO-A activity [8,18,19]

Downregulates acetylcholinesterase (AChE) activity [9,20,21]

Supports tyrosine hydroxylase (TH) activity [8]

Supports dopamine synthesis [8]

Supports noradrenaline synthesis [8]

Supports hippocampal SIRT1 levels [8]

Supports brain insulin signaling [22]

Supports long-term potentiation [23]

Supports neural stem/progenitor cell proliferation [10]

Supports neurogenesis [10]

Supports ectonucleotidase activity [21,24–26]

Downregulates adenosine deaminase (ADA) activity [21,25]

Supports neuroprotective functions [11,20,21,23,27–31]

Supports free radical scavenging [5,6,9,20,21,28,32]

Supports brain antioxidant defenses [5–7,9,20,28]

Supports Nrf2 signaling [7,29]

Supports phase II detox enzymes [7,29]

Supports brain mitochondrial function [4,29]

Supports neural AMPK signaling [4,27,29]


Supports healthy stress responses*

Supports healthy behavioral and physiological responses to stress [6,9,13,17,22,31–36]


Supports a healthy gut microbiota*

Supports the composition of the gut microbiota [15,37–42]

Supports gut microbial metabolism [38]

Supports gut-immune communication [37,39]


Promotes healthy aging and longevity*

Supports stem cell proliferation [10,43–45]

Supports stem cell differentiation [44–46]

Supports the management of senescent cells [43,47,48]

Supports cellular functions involved with pruning stressed cells [49–56]

Supports autophagy [57–63]

Supports mitophagy [48,64–66]


Supports cellular signaling* 

Influences PI3K/AKT signaling [54,67,68]

Influences mTOR signaling [57,61]

Influences AMPK signaling [69,70]

Influences SIRT1 signaling [48,60,64,70]

Influences NF-κB signaling [51]

Influences HIF-1α signaling [57,67–69,71]


Supports healthy immune function*

Supports adaptive immunity [72]

Supports immune system communication [73]


Promotes musculoskeletal health*

Supports joint health [73]

Supports muscle recovery and contraction [74,75]


Complementary ingredients*

With palmitoylethanolamide for joint health [76]

With glucosamine and chondroitin for joint health [77]

With Mangifera indica leaf extract for ergogenic support [78]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]A. Riva, M. Ronchi, G. Petrangolini, S. Bosisio, P. Allegrini, Eur. J. Drug Metab. Pharmacokinet. 44 (2019) 169–177.

[2]A. Priprem, J. Watanatorn, S. Sutthiparinyanont, W. Phachonpai, S. Muchimapura, Nanomedicine 4 (2008) 70–78.

[3]D.-M. Wang, S.-Q. Li, W.-L. Wu, X.-Y. Zhu, Y. Wang, H.-Y. Yuan, Neurochem. Res. 39 (2014) 1533–1543.

[4]S.-F. Xia, Z.-X. Xie, Y. Qiao, L.-R. Li, X.-R. Cheng, X. Tang, Y.-H. Shi, G.-W. Le, Physiol. Behav. 138 (2015) 325–331.

[5]V. Mehta, A. Parashar, M. Udayabanu, Physiol. Behav. 171 (2017) 69–78.

[6]F. Dong, S. Wang, Y. Wang, X. Yang, J. Jiang, D. Wu, X. Qu, H. Fan, R. Yao, Biochem. Biophys. Res. Commun. 491 (2017) 636–641.

[7]F. Sarubbo, M.R. Ramis, C. Kienzer, S. Aparicio, S. Esteban, A. Miralles, D. Moranta, J. Neuroimmune Pharmacol. 13 (2018) 24–38.

[8]N. Samad, A. Saleem, F. Yasmin, M.A. Shehzad, Physiol. Res. 67 (2018) 795–808.

[9]M. Karimipour, R. Rahbarghazi, H. Tayefi, M. Shimia, M. Ghanadian, J. Mahmoudi, H.S. Bagheri, Int. J. Dev. Neurosci. 74 (2019) 18–26.

[10]J. Chakraborty, R. Singh, D. Dutta, A. Naskar, U. Rajamma, K.P. Mohanakumar, CNS Neurosci. Ther. 20 (2014) 10–19.

[11]D. Kambe, M. Kotani, M. Yoshimoto, S. Kaku, S. Chaki, K. Honda, Brain Res. 1330 (2010) 83–88.

[12]Y. Hou, M.A. Aboukhatwa, D.-L. Lei, K. Manaye, I. Khan, Y. Luo, Neuropharmacology 58 (2010) 911–920.

[13]M. Rahvar, A.A. Owji, F.J. Mashayekhi, Bratisl. Lek. Listy 119 (2018) 28–31.

[14]M. Lv, S. Yang, L. Cai, L.-Q. Qin, B.-Y. Li, Z. Wan, Mol. Nutr. Food Res. 62 (2018) e1800621.

[15]K. Selvakumar, S. Bavithra, G. Krishnamoorthy, J. Arunakaran, Interdiscip. Toxicol. 11 (2018) 294–305.

[16]F. Ke, H.-R. Li, X.-X. Chen, X.-R. Gao, L.-L. Huang, A.-Q. Du, C. Jiang, H. Li, J.-F. Ge, Front. Pharmacol. 10 (2019) 1544.

[17]S. Yoshino, A. Hara, H. Sakakibara, K. Kawabata, A. Tokumura, A. Ishisaka, Y. Kawai, J. Terao, Nutrition 27 (2011) 847–852.

[18]L. Saaby, H.B. Rasmussen, A.K. Jäger, J. Ethnopharmacol. 121 (2009) 178–181.

[19]L.A. Pattanashetti, A.D. Taranalli, V. Parvatrao, R.H. Malabade, D. Kumar, Indian J. Pharmacol. 49 (2017) 60–64.

[20]R.M. Maciel, F.B. Carvalho, A.A. Olabiyi, R. Schmatz, J.M. Gutierres, N. Stefanello, D. Zanini, M.M. Rosa, C.M. Andrade, M.A. Rubin, M.R. Schetinger, V.M. Morsch, C.C. Danesi, S.T.A. Lopes, Biomed. Pharmacother. 84 (2016) 559–568.

[21]V. Mehta, A. Parashar, A. Sharma, T.R. Singh, M. Udayabanu, Horm. Behav. 89 (2017) 13–22.

[22]Y. Yao, D.D. Han, T. Zhang, Z. Yang, Phytother. Res. 24 (2010) 136–140.

[23]E. Braganhol, A.S.K. Tamajusuku, A. Bernardi, M.R. Wink, A.M.O. Battastini, Biochim. Biophys. Acta 1770 (2007) 1352–1359.

[24]F.H. Abdalla, A.M. Cardoso, L.B. Pereira, R. Schmatz, J.F. Gonçalves, N. Stefanello, A.M. Fiorenza, J.M. Gutierres, J.D. da S. Serres, D. Zanini, V.C. Pimentel, J.M. Vieira, M.R.C. Schetinger, V.M. Morsch, C.M. Mazzanti, Mol. Cell. Biochem. 381 (2013) 1–8.

[25]J. Baldissarelli, A. Santi, R. Schmatz, F.H. Abdalla, A.M. Cardoso, C.C. Martins, G.R.M. Dias, N.S. Calgaroto, L.P. Pelinson, K.P. Reichert, V.L. Loro, V.M.M. Morsch, M.R.C. Schetinger, Cell. Mol. Neurobiol. 37 (2017) 53–63.

[26]J. Lu, D.-M. Wu, Y.-L. Zheng, B. Hu, Z.-F. Zhang, Q. Shan, Z.-H. Zheng, C.-M. Liu, Y.-J. Wang, J. Pathol. 222 (2010) 199–212.

[27]F.H. Abdalla, R. Schmatz, A.M. Cardoso, F.B. Carvalho, J. Baldissarelli, J.S. de Oliveira, M.M. Rosa, M.A. Gonçalves Nunes, M.A. Rubin, I.B.M. da Cruz, F. Barbisan, V.L. Dressler, L.B. Pereira, M.R.C. Schetinger, V.M. Morsch, J.F. Gonçalves, C.M. Mazzanti, Physiol. Behav. 135 (2014) 152–167.

[28]D. Wang, J. Zhao, S. Li, G. Shen, S. Hu, Nutr. Neurosci. 21 (2018) 123–131.

[29]P.-C. Paula, S.-G. Angelica Maria, C.-H. Luis, C.-G. Gloria Patricia, Molecules 24 (2019).

[30]M. Kosari-Nasab, G. Shokouhi, A. Ghorbanihaghjo, M. Mesgari-Abbasi, A.-A. Salari, Behav. Pharmacol. 30 (2019) 282–289.

[31]S. Merzoug, M.L. Toumi, A. Tahraoui, Naunyn. Schmiedebergs. Arch. Pharmacol. 387 (2014) 921–933.

[32]J.M. Davis, E.A. Murphy, J.L. McClellan, M.D. Carmichael, J.D. Gangemi, Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 (2008) R505–9.

[33]K. Kawabata, Y. Kawai, J. Terao, J. Nutr. Biochem. 21 (2010) 374–380.

[34]V. Kumar, PPIJ 2 (2015).

[35]P. Anggreini, C. Ardianto, M. Rahmadi, J. Khotib, J. Basic Clin. Physiol. Pharmacol. 30 (2019).

[36]R. Lin, M. Piao, Y. Song, Front. Microbiol. 10 (2019) 1092.

[37]D.-N. Wu, L. Guan, Y.-X. Jiang, S.-H. Ma, Y.-N. Sun, H.-T. Lei, W.-F. Yang, Q.-F. Wang, Cardiovasc Diagn Ther 9 (2019) 545–560.

[38]D. Porras, E. Nistal, S. Martínez-Flórez, S. Pisonero-Vaquero, J.L. Olcoz, R. Jover, J. González-Gallego, M.V. García-Mediavilla, S. Sánchez-Campos, Free Radic. Biol. Med. 102 (2017) 188–202.

[39]J. Nie, L. Zhang, G. Zhao, X. Du, J. Appl. Microbiol. 127 (2019) 1824–1834.

[40]U. Etxeberria, N. Arias, N. Boqué, M.T. Macarulla, M.P. Portillo, J.A. Martínez, F.I. Milagro, J. Nutr. Biochem. 26 (2015) 651–660.

[41]J. Firrman, L. Liu, L. Zhang, G. Arango Argoty, M. Wang, P. Tomasula, M. Kobori, S. Pontious, W. Xiao, Anaerobe 42 (2016) 130–141.

[42]L. Geng, Z. Liu, W. Zhang, W. Li, Z. Wu, W. Wang, R. Ren, Y. Su, P. Wang, L. Sun, Z. Ju, P. Chan, M. Song, J. Qu, G.-H. Liu, Protein Cell 10 (2019) 417–435.

[43]Z. Yuan, J. Min, Y. Zhao, Q. Cheng, K. Wang, S. Lin, J. Luo, H. Liu, Am. J. Transl. Res. 10 (2018) 4313–4321.

[44]X.-G. Pang, Y. Cong, N.-R. Bao, Y.-G. Li, J.-N. Zhao, Biomed Res. Int. 2018 (2018) 4178021.

[45]A. Casado-Díaz, J. Anter, G. Dorado, J.M. Quesada-Gómez, J. Nutr. Biochem. 32 (2016) 151–162.

[46]S.R. Kim, K. Jiang, M. Ogrodnik, X. Chen, X.-Y. Zhu, H. Lohmeier, L. Ahmed, H. Tang, T. Tchkonia, L.J. Hickson, J.L. Kirkland, L.O. Lerman, Transl. Res. 213 (2019) 112–123.

[47]T. Liu, Q. Yang, X. Zhang, R. Qin, W. Shan, H. Zhang, X. Chen, Life Sci. 257 (2020) 118116.

[48]X. Zhang, Q. Xu, I. Saiki, Clin. Exp. Metastasis 18 (2000) 415–421.

[49]M.R. Vijayababu, A. Arunkumar, P. Kanagaraj, J. Arunakaran, J. Carcinog. 5 (2006) 10.

[50]R. Vidya Priyadarsini, R. Senthil Murugan, S. Maitreyi, K. Ramalingam, D. Karunagaran, S. Nagini, Eur. J. Pharmacol. 649 (2010) 84–91.

[51]A. Primikyri, M.V. Chatziathanasiadou, E. Karali, E. Kostaras, M.D. Mantzaris, E. Hatzimichael, J.-S. Shin, S.-W. Chi, E. Briasoulis, E. Kolettas, I.P. Gerothanassis, A.G. Tzakos, ACS Chem. Biol. 9 (2014) 2737–2741.

[52]D. Teekaraman, S.P. Elayapillai, M.P. Viswanathan, A. Jagadeesan, Chem. Biol. Interact. 300 (2019) 91–100.

[53]A.B. Granado-Serrano, M.A. Martín, L. Bravo, L. Goya, S. Ramos, J. Nutr. 136 (2006) 2715–2721.

[54]D.-H. Lee, M. Szczepanski, Y.J. Lee, Biochem. Pharmacol. 75 (2008) 2345–2355.

[55]R. Aalinkeel, B. Bindukumar, J.L. Reynolds, D.E. Sykes, S.D. Mahajan, K.C. Chadha, S.A. Schwartz, Prostate 68 (2008) 1773–1789.

[56]K. Wang, R. Liu, J. Li, J. Mao, Y. Lei, J. Wu, J. Zeng, T. Zhang, H. Wu, L. Chen, C. Huang, Y. Wei, Autophagy 7 (2011) 966–978.

[57]S. Daw, S. Law, Environ. Toxicol. 36 (2021) 149–167.

[58]X. Lin, T. Han, Y. Fan, S. Wu, F. Wang, C. Wang, Life Sci. 258 (2020) 118106.

[59]D. Wang, X. He, D. Wang, P. Peng, X. Xu, B. Gao, C. Zheng, H. Wang, H. Jia, Q. Shang, Z. Sun, Z. Luo, L. Yang, Front Cell Dev Biol 8 (2020) 613006.

[60]S. Zhang, W. Liang, Y. Abulizi, T. Xu, R. Cao, C. Xun, J. Zhang, W. Sheng, Biomed Res. Int. 2021 (2021) 6631562.

[61]D.L. Li, L. Mao, Q. Gu, F. Wei, Y.-Y. Gong, Cutan. Ocul. Toxicol. 40 (2021) 7–13.

[62]Y. Wang, W. Zhang, Q. Lv, J. Zhang, D. Zhu, Tumour Biol. 37 (2016) 925–929.

[63]X. Chang, T. Zhang, Q. Meng, ShiyuanWang, P. Yan, X. Wang, D. Luo, X. Zhou, R. Ji, Oxid. Med. Cell. Longev. 2021 (2021) 5529913.

[64]X. Han, T. Xu, Q. Fang, H. Zhang, L. Yue, G. Hu, L. Sun, Redox Biol 44 (2021) 102010.

[65]X. Yu, Y. Xu, S. Zhang, J. Sun, P. Liu, L. Xiao, Y. Tang, L. Liu, P. Yao, Nutrients 8 (2016).

[66]L.-B. Si, M.-Z. Zhang, Q. Han, J.-N. Huang, X. Long, F. Long, R.C.-H. Zhao, J.-Z. Huang, Z.-F. Liu, R. Zhao, H.-L. Zhang, X.-J. Wang, Am. J. Transl. Res. 10 (2018) 4223–4234.

[67]N.M. Al-Rasheed, L.M. Fadda, H.A. Attia, H.M. Ali, N.M. Al-Rasheed, J. Biochem. Mol. Toxicol. 31 (2017).

[68]H.-S. Kim, T. Wannatung, S. Lee, W.K. Yang, S.H. Chung, J.-S. Lim, W. Choe, I. Kang, S.-S. Kim, J. Ha, Apoptosis 17 (2012) 938–949.

[69]H. Guo, H. Ding, X. Tang, M. Liang, S. Li, J. Zhang, J. Cao, Thorac Cancer 12 (2021) 1415–1422.

[70]D.-H. Lee, Y.J. Lee, J. Cell. Biochem. 105 (2008) 546–553.

[71]J. Mlcek, T. Jurikova, S. Skrovankova, J. Sochor, Molecules 21 (2016).

[72]F. Javadi, A. Ahmadzadeh, S. Eghtesadi, N. Aryaeian, M. Zabihiyeganeh, A.R. Foroushani, S. Jazayeri, Journal of the American College of Nutrition 36 (2017) 9–15.

[73]I. Bazzucchi, F. Patrizio, R. Ceci, G. Duranti, P. Sgrò, S. Sabatini, L. Di Luigi, M. Sacchetti, F. Felici, Nutrients 11 (2019).

[74]A. Riva, J.A. Vitale, G. Belcaro, S. Hu, B. Feragalli, G. Vinciguerra, M. Cacchio, E. Bonanni, L. Giacomelli, R. Eggenhöffner, S. Togni, Minerva Med. 109 (2018) 285–289.

[75]D. Britti, R. Crupi, D. Impellizzeri, E. Gugliandolo, R. Fusco, C. Schievano, V.M. Morittu, M. Evangelista, R. Di Paola, S. Cuzzocrea, BMC Veterinary Research 13 (2017).

[76]N. Kanzaki, K. Saito, A. Maeda, Y. Kitagawa, Y. Kiso, K. Watanabe, A. Tomonaga, I. Nagaoka, H. Yamaguchi, Journal of the Science of Food and Agriculture 92 (2012) 862–869.

[77]M. Gelabert-Rebato, J.C. Wiebe, M. Martin-Rincon, N. Gericke, M. Perez-Valera, D. Curtelin, V. Galvan-Alvarez, L. Lopez-Rios, D. Morales-Alamo, J.A.L. Calbet, Front. Physiol. 9 (2018) 740.