Saffron Extract (Crocus sativus)

SAFFRON COMMON NAME

Saffron | Saffron Crocus

TOP BENEFITS OF SAFFRON

  • Supports mood*
  • Supports cognitive function*
  • Supports vision*
  • Supports sports performance*

WHAT IS SAFFRON?

Saffron is a spice derived from the flowers of Crocus sativus. It’s been used and traded as a spice for at least 4000 years and is considered the world's most costly spice by weight. Iran produces the majority of saffron: Greece, Kashmir, Morocco, Spain and Turkey are also fairly large growers. Saffron, as a spice, refers to the deep red-maroon colored stigma and styles (called threads). Not all saffron is of the same quality and strength, with price increasing substantially for the highest grades. In general, content of several of saffron’s active compounds are used to determine strength. A greater content of crocin (responsible for saffron's color), picrocrocin (a bitter compound giving the characteristic taste), and safranal (which gives the fragrance) would be graded as higher strength. In addition to these marker compounds, saffron also contains zeaxanthin, lycopene, and other carotenoids. Crocin also belongs to the carotenoid family. Most carotenoids only dissolve in oil (i.e., are fat-soluble). Crocin is water-soluble, which is part of the reason it is used in rice dishes and other water-based food recipes. There’s been a growing interest in the use of saffron for health purposes, including in areas such as mood, cognition, vision, sports performance, appetite regulation, metabolic function, and women’s health.

NEUROHACKER’S SAFFRON SOURCING

There's a long history of saffron adulteration. Because of this, Neurohacker feels it is critical to use a standardized saffron extract purchased from an ingredient supplier that can authenticate quality and strength.

The saffron extract we use has been clinically studied, is DNA authenticated, and has a patented profile for marker compounds including crocin, picrocrocin and safranal.

Saffron extract used in our products is GRAS, non-GMO, gluten-free, vegan, Kosher certified and Halal compliant. 

SAFFRON DOSING PRINCIPLES AND RATIONALE

Most saffron studies have used standardized extracts, with doses typically in the range of 20-30 mg per day. While a few studies have used 60 mg, in general, we consider 30 mg to be at the top end of what’s needed when using saffron extracts for specific clinical reasons. Since studies comparing multiple doses have not been published, there’s no information of whether saffron has a threshold effect (i.e., an amount or range less than the full dose where the majority of the response would occur; see Neurohacker Dosing Principles). However, individual (i.e. N of 1) subjective response to saffron does vary considerably, with some persons reporting noticeable differences when taking as little as 1-3 mg of a standardized saffron extract. Depending on the purpose Neurohacker is using saffron for, and the other ingredients it’s combined with, it might be dosed anywhere ranging from a more micro-dose level up (3 mg) up to a studied dose of 30 mg per day. 

SAFFRON KEY MECHANISMS

Cognitive function and Mood

  • Supports mood[1–6]
  • Protects against cognitive impairment[7–9]
  • Promotes focus and attention[10]

Exercise performance

  • Enhances reaction times[11]
  • Supports muscle strength[11]
  • Helps to protect against muscle soreness[12]

Vision

  • Supports visual acuity[13,14]
  • Protects retinal cells against light-induced damage[15–18]
  • Protects retinal cells against damage and degeneration[14,18–22]
  • Supports healthy intraocular pressure[23]
  • Enhances retinal function[24]

Brain function

  • Upregulates brain dopamine levels[25,26]
  • Upregulates brain glutamate levels[25]
  • Regulates acetylcholinesterase activity[26]
  • Upregulates brain-derived neurotrophic factor (BDNF) levels[27,28]

Neuroprotection

  • Protects neurons from neurotoxic agents[19,26,29–31]
  • Protects against the accumulation of toxic compounds in the brain[32]

Antioxidant defenses

  • Upregulates the levels of antioxidant enzymes (superoxide dismutase [SOD], glutathione peroxidase [GPx]) [22,26,31]
  • Replenishes glutathione (GSH) levels[22,26]
  • Downregulates reactive oxygen species (ROS) levels and oxidative stress[21,22,26,31]
  • Promotes healthy prooxidant-antioxidant balance[33]

Mitochondrial function

  • Supports the activity of mitochondrial enzymes[26]
  • Upregulates mitochondrial membrane potential[21]

Metabolic function

  • Supports cytokine balance[34]
  • Supports appetite regulation[35]
  • Supports healthy lipid levels and blood pressure regulation[36,37]


REFERENCES

[1] H.A. Hausenblas, D. Saha, P.J. Dubyak, S.D. Anton, J. Integr. Med. 11 (2013) 377–383.
[2] A.L. Lopresti, P.D. Drummond, Hum. Psychopharmacol. 29 (2014) 517–527.
[3] G. Kell, A. Rao, G. Beccaria, P. Clayton, A.M. Inarejos-García, M. Prodanov, Complement. Ther. Med. 33 (2017) 58–64.
[4] A.L. Lopresti, P.D. Drummond, A.M. Inarejos-García, M. Prodanov, J. Affect. Disord. 232 (2018) 349–357.
[5] S. Akhondzadeh, N. Tahmacebi-Pour, A.-A. Noorbala, H. Amini, H. Fallah-Pour, A.-H. Jamshidi, M. Khani, Phytother. Res. 19 (2005) 148–151.
[6] E. Moshiri, A.A. Basti, A.-A. Noorbala, A.-H. Jamshidi, S. Hesameddin Abbasi, S. Akhondzadeh, Phytomedicine 13 (2006) 607–611.
[7] M. Farokhnia, M. Shafiee Sabet, N. Iranpour, A. Gougol, H. Yekehtaz, R. Alimardani, F. Farsad, M. Kamalipour, S. Akhondzadeh, Hum. Psychopharmacol. 29 (2014) 351–359.
[8] S. Akhondzadeh, M.S. Sabet, M.H. Harirchian, M. Togha, H. Cheraghmakani, S. Razeghi, S.S. Hejazi, M.H. Yousefi, R. Alimardani, A. Jamshidi, F. Zare, A. Moradi, J. Clin. Pharm. Ther. 35 (2010) 581–588.
[9] S. Akhondzadeh, M. Shafiee Sabet, M.H. Harirchian, M. Togha, H. Cheraghmakani, S. Razeghi, S.S. Hejazi, M.H. Yousefi, R. Alimardani, A. Jamshidi, S.-A. Rezazadeh, A. Yousefi, F. Zare, A. Moradi, A. Vossoughi, Psychopharmacology 207 (2010) 637–643.
[10 ]S. Baziar, A. Aqamolaei, E. Khadem, S.H. Mortazavi, S. Naderi, E. Sahebolzamani, A. Mortezaei, S. Jalilevand, M.-R. Mohammadi, M. Shahmirzadi, S. Akhondzadeh, J. Child Adolesc. Psychopharmacol. 29 (2019) 205–212.
[11] A. Meamarbashi, A. Rajabi, J. Diet. Suppl. 13 (2016) 522–529.
[12] A. Meamarbashi, A. Rajabi, Clin. J. Sport Med. 25 (2015) 105–112.
[13] M. Piccardi, D. Marangoni, A.M. Minnella, M.C. Savastano, P. Valentini, L. Ambrosio, E. Capoluongo, R. Maccarone, S. Bisti, B. Falsini, Evid. Based. Complement. Alternat. Med. 2012 (2012) 429124.
[14] G.K. Broadhead, J.R. Grigg, P. McCluskey, T. Hong, T.E. Schlub, A.A. Chang, Graefes Arch. Clin. Exp. Ophthalmol. 257 (2019) 31–40.
[15] R. Maccarone, S. Di Marco, S. Bisti, Invest. Ophthalmol. Vis. Sci. 49 (2008) 1254–1261.
[16] F.D. Marco, S. Romeo, C. Nandasena, S. Purushothuman, C. Adams, S. Bisti, J. Stone, Am. J. Neurodegener. Dis. 2 (2013) 208–220.
[17] A. Laabich, G.P. Vissvesvaran, K.L. Lieu, K. Murata, T.E. McGinn, C.C. Manmoto, J.R. Sinclair, I. Karliga, D.W. Leung, A. Fawzi, R. Kubota, Invest. Ophthalmol. Vis. Sci. 47 (2006) 3156–3163.
[18] M. Yamauchi, K. Tsuruma, S. Imai, T. Nakanishi, N. Umigai, M. Shimazawa, H. Hara, Eur. J. Pharmacol. 650 (2011) 110–119.
[19] S. Purushothuman, C. Nandasena, C.L. Peoples, N. El Massri, D.M. Johnstone, J. Mitrofanis, J. Stone, J. Parkinsons. Dis. 3 (2013) 77–83.
[20] R. Natoli, Y. Zhu, K. Valter, S. Bisti, J. Eells, J. Stone, Mol. Vis. 16 (2010) 1801–1822.
[21] B. Lv, T. Chen, Z. Xu, F. Huo, Y. Wei, X. Yang, Int. J. Mol. Med. 37 (2016) 225–232.
[22] L. Chen, Y. Qi, X. Yang, Ophthalmic Res. 54 (2015) 157–168.
[23] M.H. Jabbarpoor Bonyadi, S. Yazdani, S. Saadat, BMC Complement. Altern. Med. 14 (2014) 399.
[24] A. Lashay, G. Sadough, E. Ashrafi, M. Lashay, M. Movassat, S. Akhondzadeh, Med Hypothesis Discov Innov Ophthalmol 5 (2016) 32–38.
[25] H. Ettehadi, S.N. Mojabi, M. Ranjbaran, J. Shams, H. Sahraei, M. Hedayati, F. Asefi, JBBS 03 (2013) 315–319.
[26] S.V. Rao, Muralidhara, S.C. Yenisetti, P.S. Rajini, Neurotoxicology 52 (2016) 230–242.
[27] T. Ghasemi, K. Abnous, F. Vahdati, S. Mehri, B.M. Razavi, H. Hosseinzadeh, Drug Res. 65 (2015) 337–343.
[28] F. Vahdati Hassani, V. Naseri, B.M. Razavi, S. Mehri, K. Abnous, H. Hosseinzadeh, Daru 22 (2014) 16.
[29] L. Tamegart, A. Abbaoui, R. Makbal, M. Zroudi, B. Bouizgarne, M.M. Bouyatas, H. Gamrani, Acta Histochem. 121 (2019) 171–181.
[30] P. Haeri, A. Mohammadipour, Z. Heidari, A. Ebrahimzadeh-Bideskan, Anat. Sci. Int. 94 (2019) 119–127.
[31] B. Naghizadeh, M.T. Mansouri, B. Ghorbanzadeh, Y. Farbood, A. Sarkaki, Phytomedicine 20 (2013) 537–542.
[32] Y.S. Batarseh, S.S. Bharate, V. Kumar, A. Kumar, R.A. Vishwakarma, S.B. Bharate, A. Kaddoumi, ACS Chem. Neurosci. 8 (2017) 1756–1766.
[33] T. Kermani, S.H. Mousavi, M. Shemshian, A. Norouzy, M. Mazidi, A. Moezzi, T. Moghiman, M. Ghayour-Mobarhan, G. A Ferns, Avicenna J Phytomed 5 (2015) 427–433.
[34] T. Kermani, M. Zebarjadi, H. Mehrad-Majd, S.-R. Mirhafez, M. Shemshian, F. Ghasemi, E. Mohammadzadeh, S.H. Mousavi, A. Norouzy, T. Moghiman, A. Sadeghi, G. Ferns, A. Avan, E. Mahdipour, M. Ghayour-Mobarhan, Curr. Clin. Pharmacol. 12 (2017) 122–126.
[35] N. Abedimanesh, S.Z. Bathaie, S. Abedimanesh, B. Motlagh, A. Separham, A. Ostadrahimi, J Cardiovasc Thorac Res 9 (2017) 200–208.
[36] F. Ebrahimi, N. Aryaeian, N. Pahlavani, D. Abbasi, A.F. Hosseini, S. Fallah, N. Moradi, I. Heydari, Avicenna J Phytomed 9 (2019) 322–333.
[37] A. Moravej Aleali, R. Amani, H. Shahbazian, F. Namjooyan, S.M. Latifi, B. Cheraghian, Phytother. Res. 33 (2019) 1648–1657.