Sophorae japonica L. Flower Extract (95% rutin)

Common Name

Japanese Pagoda Tree Flowers

Rutin | Rutoside | Sophorin | Quercetin-3-O-Rutinoside

Top Benefits of Rutin

Supports mitochondrial function and cellular energy*

Supports exercise performance*

Supports metabolism*

Supports healthy weight*

Supports cellular responses and antioxidant defenses*

Supports insulin signaling and glucose metabolism*

Support cardiovascular function*

Supports brain function*

Supports thyroid function*

Supports healthy gut microbiota*

What is Rutin?

Rutin is a flavonoid glycoside composed of quercetin and the disaccharide rutinose. It’s also called rutoside, quercetin-3-O-rutinoside and sophorin. The name rutin derives from the plant Ruta graveolens (Rue). Historically, rutin has been considered to be part of what was once called vitamin P, but what we now think of as citrus bioflavonoids. While it’s found in a wide variety of plants, including citrus, foods with the highest concentrations of rutin include capers, black olives, buckwheat, and asparagus. The most common use of rutin has been for supporting healthy veins.*

Neurohacker’s Rutin Sourcing

Sophorae japonica L. (i.e., Japanese Pagoda Tree) flower extract was selected as an ingredient to provide a standardized amount of rutin. Dried flower buds are used as a starting material to extract rutin, because they can contain as much as 20% rutin.

Rutin Dosing Principles and Rationale

Many flavonoid molecules are part of plants’ protective responses to mild environmental stress. Consuming them tends to produce adaptive functional responses, upregulating pathways that provide stress resistance. Because of this, we don’t think of flavonols like rutin as being “more is better” ingredients. Instead, we think it’s better to use them following hormetic dosing principles (see Neurohacker Dosing Principles). Flavonoids are additive, and often complementary with other polyphenol compounds, so the combination of all polyphenols in a formulation should be considered when determining dosage (not the amount of a single polyphenol molecule in isolation). For these reasons, we use a moderate dose of rutin.* 

Rutin Key Mechanisms 

Supports mitochondrial biogenesis and function*

Supports peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and PGC-1β [1–5]

Supports nuclear transcription factors of mitochondrial biogenesis (nuclear respiratory factor 1 [Nrf-1], Nrf-2, mitochondrial transcription factor A [TFAM])  [1,2]

Supports mitochondrial DNA (mtDNA) [1,2]

Supports mitochondrial size/number [1,2]

Supports mitochondrial oxidative phosphorylation proteins [2]

Supports healthy mitochondrial function [6,7]

Supports signaling pathways*

Supports AMP-activated protein kinase (AMPK) [1,3,4,8]

Supports peroxisome proliferator-activated receptor alpha (PPARα) [2]

Supports NAD+ levels - inhibits poly (ADP-ribose) polymerase-1 (PARP-1) [9]

Supports glucose metabolism*

Supports healthy blood glucose levels [10–16]

Supports healthy insulin signaling [7,10–13,17]

Supports GLUT4 [10]

Promotes a healthy body weight*

Supports healthy body weight [1]

Supports healthy fat accumulation and blood/liver lipid levels [1,7]

Supports healthy lipogenesis — influences peroxisome proliferator-activated receptor gamma (PPARγ) [1,4]

Supports mild uncoupling including the differentiation of brown adipose tissue and uncoupling protein 1 (UCP1) [2]

Promotes exercise performance*

Supports endurance performance [5,18]

Supports healthy lactic acid production [5]

Supports antioxidant defenses*

Supports antioxidant enzymes [4–6,9,11,19–23] 

Counters oxidative stress [5–7,9,11,20–25]

Supports resistance to oxidative stress [19]

Replenishes glutathione (GSH) levels [6,9,11,20–26]

Supports cellular signaling*

Supports healthy immune signaling [2,6,9,24]

Supports healthy cardiovascular function*

Supports healthy cardiovascular structure and function [13,14,27–29]

Supports endothelial function – endothelial NO production [30]

Supports healthy blood triglycerides and cholesterol levels [1,13,14,25]

Supports healthy vascular function [1]

Supports brain function*

Supports neuroprotective functions [20,31][6,32] [33]

Supports healthy neural immune signaling [6,9]

Supports cognitive function (spatial learning and memory) [9,31,32]

Supports healthy thyroid function*

Promotes thyroid iodide uptake [34,35]

Supports a healthy gut microbiota*

Supports a healthy composition of the gut microbiota [36]

Supports healthy gut microbial metabolism [36,37]

Supports healthy gut microbial gene expression [37]

Supports general health and wellbeing*

Supports healthy liver function [7,13,21,25]

Supports healthy kidney structure and function [15,22,23,38,39]

Supports healthy gastrointestinal structure and function [26,40]

Promotes healthy aging and longevity*

Supports SIRT-1 [1,2,5,19,24]

Supports fork head box (FoxO) transcription factor [19]

Supports lifespan extension (Drosophila melanogaster and mice) [16,19]

Supports healthy immune signaling [2,6,9,24]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, cure, or prevent any disease.


[1]S. Seo, M.-S. Lee, E. Chang, Y. Shin, S. Oh, I.-H. Kim, Y. Kim, Nutrients 7 (2015) 8152–8169.

[2]X. Yuan, G. Wei, Y. You, Y. Huang, H.J. Lee, M. Dong, J. Lin, T. Hu, H. Zhang, C. Zhang, H. Zhou, R. Ye, X. Qi, B. Zhai, W. Huang, S. Liu, W. Xie, Q. Liu, X. Liu, C. Cui, D. Li, J. Zhan, J. Cheng, Z. Yuan, W. Jin, FASEB J. 31 (2017) 333–345.

[3]N. Chen, J. Cheng, L. Zhou, T. Lei, L. Chen, Q. Shen, L. Qin, Z. Wan, J. Physiol. Biochem. 71 (2015) 733–742.

[4]C.-H. Wu, M.-C. Lin, H.-C. Wang, M.-Y. Yang, M.-J. Jou, C.-J. Wang, J. Food Sci. 76 (2011) T65–72.

[5]K.-Y. Su, C.Y. Yu, Y.-W. Chen, Y.-T. Huang, C.-T. Chen, H.-F. Wu, Y.-L.S. Chen, Int. J. Med. Sci. 11 (2014) 528–537.

[6]S.-W. Wang, Y.-J. Wang, Y.-J. Su, W.-W. Zhou, S.-G. Yang, R. Zhang, M. Zhao, Y.-N. Li, Z.-P. Zhang, D.-W. Zhan, R.-T. Liu, Neurotoxicology 33 (2012) 482–490.

[7]T. Li, S. Chen, T. Feng, J. Dong, Y. Li, H. Li, Food Funct. 7 (2016) 1147–1154.

[8]E.P. Cai, J.-K. Lin, J. Agric. Food Chem. 57 (2009) 9817–9827.

[9]H. Javed, M.M. Khan, A. Ahmad, K. Vaibhav, M.E. Ahmad, A. Khan, M. Ashafaq, F. Islam, M.S. Siddiqui, M.M. Safhi, F. Islam, Neuroscience 210 (2012) 340–352.

[10]C.-Y. Hsu, H.-Y. Shih, Y.-C. Chia, C.-H. Lee, H. Ashida, Y.-K. Lai, C.-F. Weng, Mol. Nutr. Food Res. 58 (2014) 1168–1176.

[11]P. Stanley Mainzen Prince, N. Kamalakkannan, J. Biochem. Mol. Toxicol. 20 (2006) 96–102.

[12]N. Kamalakkannan, P.S.M. Prince, Basic Clin. Pharmacol. Toxicol. 98 (2006) 97–103.

[13]A.A.H. Fernandes, E.L.B. Novelli, K. Okoshi, M.P. Okoshi, B.P. Di Muzio, J.F.C. Guimarães, A. Fernandes Junior, Biomed. Pharmacother. 64 (2010) 214–219.

[14]K.M. Krishna, A. Annapurna, G.S. Gopal, C.R.V. Chalam, K. Madan, V.K. Kumar, G.J. Prakash, Can. J. Physiol. Pharmacol. 83 (2005) 343–355.

[15]N. Kamalakkannan, P. Stanely Mainzen Prince, J. Pharm. Pharmacol. 58 (2006) 1091–1098.

[16]J.F. Aitken, K.M. Loomes, I. Riba-Garcia, R.D. Unwin, G. Prijic, A.S. Phillips, A.R.J. Phillips, D. Wu, S.D. Poppitt, K. Ding, P.E. Barran, A.W. Dowsey, G.J.S. Cooper, Biochem. Biophys. Res. Commun. 482 (2017) 625–631.

[17]T. Hu, X. Yuan, R. Ye, H. Zhou, J. Lin, C. Zhang, H. Zhang, G. Wei, M. Dong, Y. Huang, W. Lim, Q. Liu, H.J. Lee, W. Jin, J. Nutr. Biochem. 47 (2017) 21–28.

[18]I.M. Borisov, Vopr. Pitan. (1980) 35–38.

[19]D. Chattopadhyay, A. Chitnis, A. Talekar, P. Mulay, M. Makkar, J. James, K. Thirumurugan, Biogerontology 18 (2017) 397–411.

[20]M.M. Khan, A. Ahmad, T. Ishrat, G. Khuwaja, P. Srivastawa, M.B. Khan, S.S. Raza, H. Javed, K. Vaibhav, A. Khan, F. Islam, Brain Res. 1292 (2009) 123–135.

[21]R.A. Khan, M.R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12 (2012) 178.

[22]R.A. Khan, M.R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12 (2012) 204.

[23]A. Korkmaz, D. Kolankaya, J. Surg. Res. 164 (2010) 309–315.

[24]M.-R. Khajevand-Khazaei, P. Mohseni-Moghaddam, M. Hosseini, L. Gholami, T. Baluchnejadmojarad, M. Roghani, Eur. J. Pharmacol. 833 (2018) 307–313.

[25]S.S. Al-Rejaie, A.M. Aleisa, M.M. Sayed-Ahmed, O.A. Al-Shabanah, H.M. Abuohashish, M.M. Ahmed, K.A. Al-Hosaini, M.M. Hafez, BMC Complement. Altern. Med. 13 (2013) 136.

[26]C. La Casa, I. Villegas, C. Alarcón de la Lastra, V. Motilva, M.J. Martín Calero, J. Ethnopharmacol. 71 (2000) 45–53.

[27]A. Annapurna, C.S. Reddy, R.B. Akondi, S.R.C. Rao, J. Pharm. Pharmacol. 61 (2009) 1365–1374.

[28]M. Li, Y. Jiang, W. Jing, B. Sun, C. Miao, L. Ren, Can. J. Physiol. Pharmacol. 91 (2013) 951–959.

[29]R. Huang, Z. Shi, L. Chen, Y. Zhang, J. Li, Y. An, Eur. J. Pharmacol. 814 (2017) 151–160.

[30]A. Ugusman, Z. Zakaria, K.H. Chua, N.A.M.M. Nordin, Z. Abdullah Mahdy, ScientificWorldJournal 2014 (2014) 169370.

[31]F. Pu, K. Mishima, K. Irie, K. Motohashi, Y. Tanaka, K. Orito, T. Egawa, Y. Kitamura, N. Egashira, K. Iwasaki, M. Fujiwara, J. Pharmacol. Sci. 104 (2007) 329–334.

[32]W. Tongjaroenbuangam, N. Ruksee, P. Chantiratikul, N. Pakdeenarong, W. Kongbuntad, P. Govitrapong, Neurochem. Int. 59 (2011) 677–685.

[33]M.I. Azevedo, A.F. Pereira, R.B. Nogueira, F.E. Rolim, G.A.C. Brito, D.V.T. Wong, R.C.P. Lima-Júnior, R. de Albuquerque Ribeiro, M.L. Vale, Mol. Pain 9 (2013) 53.

[34]C.F.L. Gonçalves, M.C. de S. dos Santos, M.G. Ginabreda, R.S. Fortunato, D.P. de Carvalho, A.C. Freitas Ferreira, PLoS One 8 (2013) e73908.

[35]C.F.L. Gonçalves, M.L. de Freitas, R.S. Fortunato, L. Miranda-Alves, D.P. Carvalho, A.C.F. Ferreira, Thyroid 28 (2018) 265–275.

[36]S.G. Parkar, T.M. Trower, D.E. Stevenson, Anaerobe 23 (2013) 12–19.

[37]M.F. Mazzeo, R. Lippolis, A. Sorrentino, S. Liberti, F. Fragnito, R.A. Siciliano, PLoS One 10 (2015) e0142376.

[38]Q.-H. Hu, C. Wang, J.-M. Li, D.-M. Zhang, L.-D. Kong, Am. J. Physiol. Renal Physiol. 297 (2009) F1080–91.

[39]K.M. Kamel, O.M. Abd El-Raouf, S.A. Metwally, H.A. Abd El-Latif, M.E. El-sayed, J. Biochem. Mol. Toxicol. 28 (2014) 312–319.

[40]I.T. Abdel-Raheem, Basic Clin. Pharmacol. Toxicol. 107 (2010) 742–750.