Sophorae japonica L. Flower Extract (95% rutin)

Sophorae japonica L. Flower Extract Common Name

Japanese Pagoda Tree Flowers

Rutin | Rutoside | Sophorin | Quercetin-3-O-Rutinoside

Top Benefits of Rutin

  • Supports mitochondrial function and cellular energy*
  • Supports exercise performance*
  • Supports metabolism*
  • Supports healthy weight*
  • Supports cellular responses and antioxidant defenses*
  • Supports insulin signaling and glucose metabolism*
  • Support cardiovascular function*
  • Supports brain function*
  • Supports thyroid function*
  • Supports healthy gut microbiota*

What is Rutin?

Rutin is a flavonoid glycoside composed of quercetin and the disaccharide rutinose. It’s also called rutoside, quercetin-3-O-rutinoside and sophorin. The name rutin derives from the plant Ruta graveolens (Rue). Historically, rutin has been considered to be part of what was once called vitamin P, but what we now think of as citrus bioflavonoids. While it’s found in a wide variety of plants, including citrus, foods with the highest concentrations of rutin include capers, black olives, buckwheat, and asparagus. The most common use of rutin has been for supporting healthy veins.

Neurohacker’s Rutin Sourcing

Sophorae japonica L. (i.e., Japanese Pagoda Tree) flower extract was selected as an ingredient to provide a standardized amount of rutin. Dried flower buds are used as a starting material to extract rutin, because they can contain as much as 20% rutin.

Rutin Dosing Principles and Rationale

Many flavonoid molecules are part of plants’ protective responses to mild environmental stress. Consuming them tends to produce adaptive functional responses, upregulating pathways that provide stress resistance. Because of this, we don’t think of flavonols like rutin as being “more is better” ingredients. Instead we think it’s better to use them following hormetic dosing principles (see Neurohacker Dosing Principles). Flavonoids are additive, and often complementary with other polyphenol compounds, so the combination of all polyphenols in a formulation should be considered when determining dosage (not the amount of a single polyphenol molecule in isolation). For these reasons we use a moderate dose of rutin. 

Rutin Key Mechanisms 

Mitochondrial biogenesis and function

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and PGC1β[1–5]
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (nuclear respiratory factor 1 [Nrf-1], Nrf-2, mitochondrial transcription factor A [TFAM])[1,2]
  • Supports mitochondrial DNA (mtDNA)[1,2]
  • Upregulates mitochondrial size/number[1,2]
  • Upregulates mitochondrial oxidative phosphorylation proteins[2]
  • Protects from mitochondrial dysfunction[6,7]

Signaling pathways

  • Upregulates AMP-activated protein kinase (AMPK)[1,3,4,8]
  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα)[2]
  • Upregulates NAD+ levels - inhibits poly (ADP-ribose) polymerase-1 (PARP-1)[9]

Glucose metabolism

  • Supports healthy blood glucose levels[10–16]
  • Supports healthy insulin signaling[7,10–13,17]
  • Upregulates GLUT4[10]

Body weight

  • Supports healthy body weight[1]
  • Downregulates fat accumulation and blood/liver lipid levels[1,7]
  • Downregulates lipogenesis — downregulates peroxisome proliferator-activated receptor gamma (PPARγ)[1,4]
  • Supports mild uncoupling including the differentiation of brown adipose tissue and uncoupling protein 1 (UCP1)[2]

Exercise performance (ergogenic effect)

  • Supports endurance performance[5,18]
  • Downregulates lactic acid production[5]

Antioxidant defenses

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione reductase [GR])[4–6,9,11,19–23] 
  • Downregulates oxidative stress[5–7,9,11,20–25]
  • Supports resistance to oxidative stress[19]
  • Replenishes glutathione (GSH) levels[6,9,11,20–26]

Cellular signaling

  • Downregulates the expression of proinflammatory mediators – nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), interleukin 8 (IL-8), tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1β), nitric oxide (NO) inducible NO synthase (iNOS)[2,6,9,24]

Cardiovascular function

  • Protects cardiovascular structure and function[13,14,27–29]
  • Supports endothelial function – upregulates endothelial NO production[30]
  • Supports healthy blood triglycerides and cholesterol levels[1,13,14,25]
  • Supports healthy vascular function[1]

Brain function

  • Neuroprotective against ischemia/hypoxia[20,31]
  • Neuroprotective against neurotoxic agents[6,32]
  • Neuroprotective against oxidative stress[33]
  • Regulates neural cytokine signaling[6,9]
  • Protects cognitive function (spatial learning and memory)[9,31,32]

Thyroid function

  • Promotes thyroid iodide uptake[34,35]

Protection of other organs and systems

  • Protects liver function[7,13,21,25]
  • Protects kidney structure and function[15,22,23,36,37]
  • Protects gastrointestinal structure and function[26,38]

Gut microbiota

  • Regulates the composition of the gut microbiota[39]
  • Regulates gut microbial metabolism[39,40]
  • Modulates gut microbial gene expression[40]

Healthspan /lifespan extension

  • Upregulates SIRT-1[1,2,5,19,24]
  • Upregulates fork head box (FoxO) transcription factor[19]
  • Extends lifespan (Drosophila melanogaster and mice)[16,19]


[1] S. Seo et al., Nutrients. 7, 8152–8169 (2015).
[2] X. Yuan et al., FASEB J. 31, 333–345 (2017).
[3] N. Chen et al., J. Physiol. Biochem. 71, 733–742 (2015).
[4] C.-H. Wu et al., J. Food Sci. 76, T65–72 (2011).
[5] K.-Y. Su et al., Int. J. Med. Sci. 11, 528–537 (2014).
[6] S.-W. Wang et al., Neurotoxicology. 33, 482–490 (2012).
[7] T. Li et al., Food Funct. 7, 1147–1154 (2016).
[8] E. P. Cai, J.-K. Lin, J. Agric. Food Chem. 57, 9817–9827 (2009).
[9] H. Javed et al., Neuroscience. 210, 340–352 (2012).
[10] C.-Y. Hsu et al., Mol. Nutr. Food Res. 58, 1168–1176 (2014).
[11] P. Stanley Mainzen Prince, N. Kamalakkannan, J. Biochem. Mol. Toxicol. 20, 96–102 (2006).
[12] N. Kamalakkannan, P. S. M. Prince, Basic Clin. Pharmacol. Toxicol. 98, 97–103 (2006).
[13] A. A. H. Fernandes et al., Biomed. Pharmacother. 64, 214–219 (2010).
[14] K. M. Krishna et al., Can. J. Physiol. Pharmacol. 83, 343–355 (2005).
[15] N. Kamalakkannan, P. Stanely Mainzen Prince, J. Pharm. Pharmacol. 58, 1091–1098 (2006).
[16] J. F. Aitken et al., Biochem. Biophys. Res. Commun. 482, 625–631 (2017).
[17] T. Hu et al., J. Nutr. Biochem. 47, 21–28 (2017).
[18] I. M. Borisov, Vopr. Pitan., 35–38 (1980).
[19] D. Chattopadhyay et al., Biogerontology. 18, 397–411 (2017).
[20] M. M. Khan et al., Brain Res. 1292, 123–135 (2009).
[21] R. A. Khan, M. R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12, 178 (2012).
[22] R. A. Khan, M. R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12, 204 (2012).
[23] A. Korkmaz, D. Kolankaya, J. Surg. Res. 164, 309–315 (2010).
[24] M.-R. Khajevand-Khazaei et al., Eur. J. Pharmacol. 833, 307–313 (2018).
[25] S. S. Al-Rejaie et al., BMC Complement. Altern. Med. 13, 136 (2013).
[26] C. La Casa, I. Villegas, C. Alarcón de la Lastra, V. Motilva, M. J. Martín Calero, J. Ethnopharmacol. 71, 45–53 (2000).
[27] A. Annapurna, C. S. Reddy, R. B. Akondi, S. R. C. Rao, J. Pharm. Pharmacol. 61, 1365–1374 (2009).
[28] M. Li et al., Can. J. Physiol. Pharmacol. 91, 951–959 (2013).
[29] R. Huang et al., Eur. J. Pharmacol. 814, 151–160 (2017).
[30] A. Ugusman, Z. Zakaria, K. H. Chua, N. A. M. M. Nordin, Z. Abdullah Mahdy, ScientificWorldJournal. 2014, 169370 (2014).
[31] F. Pu et al., J. Pharmacol. Sci. 104, 329–334 (2007).
[32] W. Tongjaroenbuangam et al., Neurochem. Int. 59, 677–685 (2011).
[33] M. I. Azevedo et al., Mol. Pain. 9, 53 (2013).
[34] C. F. L. Gonçalves et al., PLoS One. 8, e73908 (2013).
[35] C. F. L. Gonçalves et al., Thyroid. 28, 265–275 (2018).
[36] Q.-H. Hu, C. Wang, J.-M. Li, D.-M. Zhang, L.-D. Kong, Am. J. Physiol. Renal Physiol. 297, F1080–91 (2009).
[37] K. M. Kamel, O. M. Abd El-Raouf, S. A. Metwally, H. A. Abd El-Latif, M. E. El-sayed, J. Biochem. Mol. Toxicol. 28, 312–319 (2014).
[38] I. T. Abdel-Raheem, Basic Clin. Pharmacol. Toxicol. 107, 742–750 (2010).
[39] S. G. Parkar, T. M. Trower, D. E. Stevenson, Anaerobe. 23, 12–19 (2013).
[40] M. F. Mazzeo et al., PLoS One. 10, e0142376 (2015).