Lycopene

LYCOPENE COMMON NAME

Lycopene

TOP BENEFITS OF LYCOPENE

Support brain function*
Supports antioxidant defenses*
Supports gut microbiota*
Supports healthy aging*

WHAT IS LYCOPENE?

Lycopene is one member in a class of natural pigments called carotenoids—carotenoids are fat-soluble yellow, orange, or red pigments. Lycopene is on the red end of the carotenoid pigment color continuum. The main dietary source is red tomatoes and tomato products—over 80% of the lycopene in American diets comes from tomato products—but lycopene can be found in lower amounts in some other pink-red colored foods such as watermelon and grapefruit. Lycopene is a plant defense compound, acting to protect tomatoes, as an example, against environmental stress such as sunlight. Since it is fat-soluble, lycopene is active in places with high lipid content, where it’s a powerful antioxidant. These places include cell membranes (which have a lipid bilayer), mitochondria, and the brain and nervous system. There is a growing body of research, mostly in animals, suggesting that lycopene supports protective, repair and regenerative processes in the brain. 

NEUROHACKER’S LYCOPENE SOURCING

Lycopene is Non-GMO and Vegan.

LYCOPENE DOSING PRINCIPLES AND RATIONALE

One of our dosing principles is to determine whether there is a dosing range, in which many of the benefits occur and above which there appears to be diminishing returns (i.e., a threshold), and to provide a dose within this threshold range (see Neurohacker Dosing Principles). We consider lycopene to be one of these threshold compounds. While a wide range of doses of lycopene have been used in studies, functional benefits have been reported even at the lower to more moderate doses. And because lycopene is fat-soluble, and like other fat-soluble compounds, accumulates over time, lower amounts are needed when it will be given over longer periods of time. 

LYCOPENE KEY MECHANISMS

Brain function

Supports serotonin signaling [1,2]

Supports adrenergic signaling [1]

Supports dopaminergic signaling [1,2]

Supports GABA-Glutamate signaling [2]

Supports brain-derived neurotrophic factor (BDNF) [3–5]

Supports synaptic transmission [6]

Supports neural stem cells [7]

Supports neuroprotective functions [3–6,8–13]

Supports brain mitochondrial function [4,13,14]

Supports hearing [15,16]

Supports neural phase II detoxifying/antioxidant enzymes [3]

Antioxidant defenses

Supports antioxidant defenses [3,7,17–20]

Supports Nrf2 signaling [3,9]

Counters oxidative stress and ROS levels [3,7,18–21]

Gut microbiota

Supports the composition of the gut microbiota [22] 

Supports intestinal barrier integrity [6,23]

Immune system

Supports adaptive immunity [19,24–26]

Healthy aging and longevity

Supports a healthy metabolism [6,22,23]

Supports mitochondrial function [23]

Supports cardiovascular health [18,27]

Supports immune cell function [19]

Supports stem cells [7,21]

REFERENCES

[1] S. Datta, S. Jamwal, R. Deshmukh, P. Kumar, Eur. J. Pharmacol. 771 (2016) 229–235.

[2] W. Yang, Z. Shen, S. Wen, W. Wang, M. Hu, Lipids Health Dis. 17 (2018) 13.

[3] B. Zhao, B. Ren, R. Guo, W. Zhang, S. Ma, Y. Yao, T. Yuan, Z. Liu, X. Liu, Food Chem. Toxicol. 109 (2017) 505–516.

[4] A. Prakash, A. Kumar, Eur. J. Pharmacol. 741 (2014) 104–111.

[5] E.M. El Morsy, M. Ahmed, Hum. Exp. Toxicol. (2020) 960327120909882.

[6] J. Wang, Z. Wang, B. Li, Y. Qiang, T. Yuan, X. Tan, Z. Wang, Z. Liu, X. Liu, Int. J. Obes. 43 (2019) 1735–1746.

[7] J.Y. Kim, J.-S. Lee, Y.-S. Han, J.H. Lee, I. Bae, Y.M. Yoon, S.M. Kwon, S.H. Lee, Biomol. Ther. 23 (2015) 517–524.

[8] B. Zhao, H. Liu, J. Wang, P. Liu, X. Tan, B. Ren, Z. Liu, X. Liu, J. Agric. Food Chem. 66 (2018) 3127–3136.

[9] J. Wang, L. Li, Z. Wang, Y. Cui, X. Tan, T. Yuan, Q. Liu, Z. Liu, X. Liu, J. Nutr. Biochem. 56 (2018) 16–25.

[10] C.-B. Liu, R. Wang, Y.-F. Yi, Z. Gao, Y.-Z. Chen, J. Nutr. Biochem. 53 (2018) 66–71.

[11] L. Yu, W. Wang, W. Pang, Z. Xiao, Y. Jiang, Y. Hong, J. Alzheimers. Dis. 57 (2017) 475–482.

[12] Z. Wang, J. Fan, J. Wang, Y. Li, L. Xiao, D. Duan, Q. Wang, Neurosci. Lett. 627 (2016) 185–191.

[13] A.K. Sachdeva, K. Chopra, J. Nutr. Biochem. 26 (2015) 736–744.

[14] R. Sandhir, A. Mehrotra, S.S. Kamboj, Neurochem. Int. 57 (2010) 579–587.

[15] M.T. Ciçek, T.M. Kalcioğlu, T. Bayindir, Y. Toplu, M. Iraz, Turk J Med Sci 44 (2014) 582–585.

[16] M. Ozkırış, Z. Kapusuz, S. Karaçavuş, L. Saydam, Eur. Arch. Otorhinolaryngol. 270 (2013) 3027–3033.

[17] H.N. Saada, R.G. Rezk, N.A. Eltahawy, Phytother. Res. 24 Suppl 2 (2010) S204–8.

[18] J.Y. Kim, J.K. Paik, O.Y. Kim, H.W. Park, J.H. Lee, Y. Jang, J.H. Lee, Atherosclerosis 215 (2011) 189–195.

[19] T.R. Neyestani, N. Shariatzadeh, A. Gharavi, A. Kalayi, N. Khalaji, J. Endocrinol. Invest. 30 (2007) 833–838.

[20] S. Devaraj, S. Mathur, A. Basu, H.H. Aung, V.T. Vasu, S. Meyers, I. Jialal, J. Am. Coll. Nutr. 27 (2008) 267–273.

[21] Y. Li, F. Xue, S.-Z. Xu, X.-W. Wang, X. Tong, X.-J. Lin, Eur. Rev. Med. Pharmacol. Sci. 18 (2014) 1625–1631.

[22] M. Wiese, Y. Bashmakov, N. Chalyk, D.S. Nielsen, Ł. Krych, W. Kot, V. Klochkov, D. Pristensky, T. Bandaletova, M. Chernyshova, N. Kyle, I. Petyaev, Biomed Res. Int. 2019 (2019) 4625279.

[23] J. Wang, Y. Suo, J. Zhang, Q. Zou, X. Tan, T. Yuan, Z. Liu, X. Liu, J. Nutr. Biochem. 69 (2019) 63–72.

[24] T.R. Neyestani, N. Shariat-Zadeh, A. ’azam Gharavi, A. Kalayi, N. Khalaji, Iran. J. Allergy Asthma Immunol. 6 (2007) 79–87.

[25] X. Jiang, H. Wu, W. Zhao, X. Ding, Q. You, F. Zhu, M. Qian, P. Yu, Cancer Cell Int. 19 (2019) 68.

[26] E.D. Eze, A.M. Afodun, J. Kasolo, K.I. Kasozi, BMC Res. Notes 12 (2019) 805.

[27] P.R. Gajendragadkar, A. Hubsch, K.M. Mäki-Petäjä, M. Serg, I.B. Wilkinson, J. Cheriyan, PLoS One 9 (2014) e99070.