N-acetylcysteine | acetylcysteine | NAC
N-acetylcysteine (NAC), a sulfur-containing amino acid, is the acetylated form of L-cysteine. The acetylation increases bioavailability compared to cysteine. NAC increases body stores of L-cysteine, which, along with glutamine and glycine, is used to make an important detoxification and antioxidant molecule called “glutathione”[1]. This ability to support production of glutathione is NAC’s main mechanism of action[2]. L-cysteine availability limits the rate of glutathione production (it is thought to be rate-limiting)[3]. Supplying NAC allows the body to restore intracellular glutathione levels when demand has been increased or under circumstances when it is lower (such as older age or increased toxin exposure) in tissues throughout the body (including the brain, liver, and muscles). The combination of NAC and glycine appears to be additive[4,5], which makes sense since both are used in glutathione production. NAC promotes glutathione-related antioxidant defenses, which helps protect cells and mitochondria against free radicals, cell membrane damage, damage from metals and toxins, and other oxidative stress-related and aging issues.
NAC is non-GMO, gluten-free and vegan.
NAC is generally considered to be dose-dependent (see Neurohacker Dosing Principles) in the range it’s most commonly dosed (between 400-2400 mg a day). Minor side-effects of NAC also go up with higher doses. Since our use is solely to augment the supply of molecular precursors to make glutathione in combination with other ingredients, and not to use NAC alone, we opted to use a low dose, primarily to benefits of having a glutathione precursor while being at a dose that’s sufficiently low enough to minimize the risk of producing unwanted effects.
Antioxidant defenses
Mitochondrial function
Brain function
Immunity
Gastrointestinal function and gut microbiota
Synergies
REFERENCES
[1] G. Wu, Y.-Z. Fang, S. Yang, J.R. Lupton, N.D. Turner, J. Nutr. 134 (2004) 489–492.
[2] K.R. Atkuri, J.J. Mantovani, L.A. Herzenberg, L.A. Herzenberg, Curr. Opin. Pharmacol. 7 (2007) 355–359.
[3] S.C. Lu, Biochim. Biophys. Acta 1830 (2013) 3143–3153.
[4] S. Xie, W. Zhou, L. Tian, J. Niu, Y. Liu, Fish Shellfish Immunol. 55 (2016) 233–241.
[5] K.A. Cieslik, R.V. Sekhar, A. Granillo, A. Reddy, G. Medrano, C.P. Heredia, M.L. Entman, D.J. Hamilton, S. Li, E. Reineke, A.A. Gupte, A. Zhang, G.E. Taffet, J. Gerontol. A Biol. Sci. Med. Sci. 73 (2018) 1167–1177.
[6] M.J. Holmay, M. Terpstra, L.D. Coles, U. Mishra, M. Ahlskog, G. Öz, J.C. Cloyd, P.J. Tuite, Clin. Neuropharmacol. 36 (2013) 103–106.
[7] S. Kasperczyk, M. Dobrakowski, A. Kasperczyk, A. Ostałowska, E. Birkner, Clin. Toxicol. 51 (2013) 480–486.
[8] S.A. Farr, H.F. Poon, D. Dogrukol-Ak, J. Drake, W.A. Banks, E. Eyerman, D.A. Butterfield, J.E. Morley, J. Neurochem. 84 (2003) 1173–1183.
[9] O.M. Dean, M. van den Buuse, M. Berk, D.L. Copolov, C. Mavros, A.I. Bush, Neurosci. Lett. 499 (2011) 149–153.
[10] O.E. Aparicio-Trejo, L.M. Reyes-Fermín, A. Briones-Herrera, E. Tapia, J.C. León-Contreras, R. Hernández-Pando, L.G. Sánchez-Lozada, J. Pedraza-Chaverri, Free Radic. Biol. Med. 130 (2018) 379–396.
[11] W.-C. Lee, L.-C. Li, J.-B. Chen, H.-W. Chang, ScientificWorldJournal 2015 (2015) 620826.
[12] V.S. Van Laar, N. Roy, A. Liu, S. Rajprohat, B. Arnold, A.A. Dukes, C.D. Holbein, S.B. Berman, Neurobiol. Dis. 74 (2015) 180–193.
[13] M. Günther, J. Davidsson, S. Plantman, S. Norgren, T. Mathiesen, M. Risling, J. Clin. Neurosci. 22 (2015) 1477–1483.
[14] E. Olakowska, W. Marcol, A. Właszczuk, I. Woszczycka-Korczyńska, J. Lewin-Kowalik, Adv. Clin. Exp. Med. 26 (2017) 1329–1334.
[15] W.A. Keshk, M.A. Ibrahim, S.M. Shalaby, Z.A. Zalat, W.S. Elseady, Arch. Biochem. Biophys. 680 (2020) 108227.
[16] C.-Y. Lin, J.-L. Wu, T.-S. Shih, P.-J. Tsai, Y.-M. Sun, M.-C. Ma, Y.L. Guo, Hear. Res. 269 (2010) 42–47.
[17] A.-C. Lindblad, U. Rosenhall, A. Olofsson, B. Hagerman, Noise Health 13 (2011) 392–401.
[18] M.E. Hoffer, C. Balaban, M.D. Slade, J.W. Tsao, B. Hoffer, PLoS One 8 (2013) e54163.
[19] R. Kopke, M.D. Slade, R. Jackson, T. Hammill, S. Fausti, B. Lonsbury-Martin, A. Sanderson, L. Dreisbach, P. Rabinowitz, P. Torre 3rd, B. Balough, Hear. Res. 323 (2015) 40–50.
[20] S. De Flora, C. Grassi, L. Carati, Eur. Respir. J. 10 (1997) 1535–1541.
[21] R. Breitkreutz, N. Pittack, C.T. Nebe, D. Schuster, J. Brust, M. Beichert, V. Hack, V. Daniel, L. Edler, W. Dröge, J. Mol. Med. 78 (2000) 55–62.
[22] L. Arranz, C. Fernández, A. Rodríguez, J.M. Ribera, M. De la Fuente, Free Radic. Biol. Med. 45 (2008) 1252–1262.
[23] A.M. Sadowska, B. Manuel-y-Keenoy, T. Vertongen, G. Schippers, D. Radomska-Lesniewska, E. Heytens, W.A. De Backer, Pharmacol. Res. 53 (2006) 216–225.
[24] M. Linden, E. Wieslander, A. Eklund, K. Larsson, R. Brattsand, Eur. Respir. J. 1 (1988) 645–650.
[25] D. Morris, C. Guerra, M. Khurasany, F. Guilford, B. Saviola, Y. Huang, V. Venketaraman, J. Interferon Cytokine Res. 33 (2013) 270–279.
[26] A.R. Heller, G. Groth, S.C. Heller, R. Breitkreutz, T. Nebe, M. Quintel, T. Koch, Crit. Care Med. 29 (2001) 272–276.
[27] M. Puerto, N. Guayerbas, V. Víctor, M. De la Fuente, Pharmacol. Biochem. Behav. 73 (2002) 797–804.
[28] L. Ohman, C. Dahlgren, P. Follin, D. Lew, O. Stendahl, Agents Actions 36 (1992) 271–277.
[29] V.M. Víctor, M. Rocha, M. De la Fuente, Int. Immunopharmacol. 3 (2003) 97–106.
[30] S. Kojima, H. Ishida, M. Takahashi, K. Yamaoka, Radiat. Res. 157 (2002) 275–280.
[31] M. Viora, M.G. Quaranta, E. Straface, R. Vari, R. Masella, W. Malorni, Immunology 104 (2001) 431–438.
[32]C. Spada, A. Treitinger, M. Reis, I.Y. Masokawa, J.C. Verdi, M.C. Luiz, M.V.S. Silveira, C.M. Michelon, S. Avila-Junior, L.D.O. Gil, S. Ostrowskyl, Clin. Chem. Lab. Med. 40 (2002) 452–455.
[33] O.V. Kalyuzhin, Ter. Arkh. 90 (2018) 89–95.
[34] S.I. Lee, K.S. Kang, Sci. Rep. 9 (2019) 1004.
[35] J.M. Oldham, L.J. Witt, A. Adegunsoye, J.H. Chung, C. Lee, S. Hsu, L.W. Chen, A. Husain, S. Montner, R. Vij, M.E. Strek, I. Noth, BMC Pulm. Med. 18 (2018) 30.
[36] S. Pathak, C. Stern, A. Vambutas, Immunol. Res. 63 (2015) 236–245.
[37] K. Shimada, H. Uzui, T. Ueda, J.-D. Lee, C. Kishimoto, J. Cardiovasc. Pharmacol. Ther. 20 (2015) 203–210.
[38] G. Wang, J. Wang, H. Ma, G.A.S. Ansari, M.F. Khan, Toxicol. Appl. Pharmacol. 273 (2013) 189–195.
[39] D. Lehmann, D. Karussis, R. Misrachi-Koll, E. Shezen, H. Ovadia, O. Abramsky, J. Neuroimmunol. 50 (1994) 35–42.
[40] A. Andreou, S. Trantza, D. Filippou, N. Sipsas, S. Tsiodras, In Vivo 34 (2020) 1567–1588.
[41] G.P. Sreekanth, J. Panaampon, A. Suttitheptumrong, A. Chuncharunee, J. Bootkunha, P.-T. Yenchitsomanus, T. Limjindaporn, Antiviral Res. 166 (2019) 42–55.
[42] X. Gao, E.-M. Lampraki, S. Al-Khalidi, M.A. Qureshi, R. Desai, J.B. Wilson, PLoS One 12 (2017) e0189167.
[43] M. Mata, I. Sarrion, M. Armengot, C. Carda, I. Martinez, J.A. Melero, J. Cortijo, PLoS One 7 (2012) e48037.
[44] M. Mata, E. Morcillo, C. Gimeno, J. Cortijo, Biochem. Pharmacol. 82 (2011) 548–555.
[45] P. Ghezzi, D. Ungheri, Int. J. Immunopathol. Pharmacol. 17 (2004) 99–102.
[46] M.-M.O. Garigliany, D.J. Desmecht, J. Negat. Results Biomed. 10 (2011) 5.
[47] A. Garozzo, G. Tempera, D. Ungheri, R. Timpanaro, A. Castro, Int. J. Immunopathol. Pharmacol. 20 (2007) 349–354.
[48] D. Ungheri, C. Pisani, G. Sanson, A. Bertani, G. Schioppacassi, R. Delgado, M. Sironi, P. Ghezzi, Int. J. Immunopathol. Pharmacol. 13 (2000) 123–128.
[49] Z. Luo, X. Xu, T. Sho, W. Luo, J. Zhang, W. Xu, J. Yao, J. Xu, J. Anim. Sci. 97 (2019) 1757–1771.
[50] Y. Delneste, P. Jeannin, L. Potier, P. Romero, J.Y. Bonnefoy, Blood 90 (1997) 1124–1132.
[51] G.V. Guibas, E. Spandou, S. Meditskou, T.A. Vyzantiadis, K.N. Priftis, G. Anogianakis, Int. Forum Allergy Rhinol. 3 (2013) 543–549.
[52] A.M. Gamage, K.O. Lee, Y.-H. Gan, Microbes Infect. 16 (2014) 661–671.
[53] N. Guayerbas, M. Puerto, M.D. Ferrández, M. De La Fuente, Clin. Exp. Pharmacol. Physiol. 29 (2002) 1009–1014.
[54] M. De La Fuente, J. Miquel, M.P. Catalán, V.M. Víctor, N. Guayerbas, Free Radic. Res. 36 (2002) 119–126.
[55] W. Malorni, A. D’Ambrosio, G. Rainaldi, R. Rivabene, M. Viora, Immunol. Lett. 43 (1994) 209–214.
[56] N. Guayerbas, M. Puerto, P. Alvarez, M. de la Fuente, Cell. Mol. Biol. 50 Online Pub (2004) OL677–81.
[57] C. Gaykwad, J. Garkhal, G.E. Chethan, S. Nandi, U.K. De, J. Vet. Pharmacol. Ther. 41 (2018) 68–75.
[58] R.-H. Zhang, C.-H. Li, C.-L. Wang, M.-J. Xu, T. Xu, D. Wei, B.-J. Liu, G.-H. Wang, S.-F. Tian, Int. Immunopharmacol. 22 (2014) 1–8.
[59] K. Pilipow, E. Scamardella, S. Puccio, S. Gautam, F. De Paoli, E.M. Mazza, G. De Simone, S. Polletti, M. Buccilli, V. Zanon, P. Di Lucia, M. Iannacone, L. Gattinoni, E. Lugli, JCI Insight 3 (2018).
[60] M.J. Scheffel, G. Scurti, P. Simms, E. Garrett-Mayer, S. Mehrotra, M.I. Nishimura, C. Voelkel-Johnson, Cancer Res. 76 (2016) 6006–6016.
[61] M.J. Scheffel, G. Scurti, M.M. Wyatt, E. Garrett-Mayer, C.M. Paulos, M.I. Nishimura, C. Voelkel-Johnson, Cancer Immunol. Immunother. 67 (2018) 691–702.
[62] K. Schlie, A. Westerback, L. DeVorkin, L.R. Hughson, J.M. Brandon, S. MacPherson, I. Gadawski, K.N. Townsend, V.I. Poon, M.A. Elrick, H.C.F. Côté, N. Abraham, E.J. Wherry, N. Mizushima, J.J. Lum, J. Immunol. 194 (2015) 4277–4286.
[63] J. Zheng, X. Yuan, C. Zhang, P. Jia, S. Jiao, X. Zhao, H. Yin, Y. Du, H. Liu, J. Diabetes (2018).
[64] C.C. Xu, S.F. Yang, L.H. Zhu, X. Cai, Y.S. Sheng, S.W. Zhu, J.X. Xu, J. Anim. Sci. 92 (2014) 1504–1511.
[65] C. Wan, R. Xue, Y. Zhan, Y. Wu, X. Li, F. Pei, OMICS 21 (2017) 540–549.
[66] D. Yi, Y. Hou, H. Xiao, L. Wang, Y. Zhang, H. Chen, T. Wu, B. Ding, C.-A.A. Hu, G. Wu, Amino Acids 49 (2017) 1915–1929.
[67] K. Miyagawa, Y. Hayashi, S. Kurihara, A. Maeda, Geriatr. Gerontol. Int. 8 (2008) 243–250.
[68] S. Kawada, K. Kobayashi, M. Ohtani, C. Fukusaki, J. Strength Cond. Res. 24 (2010) 846–851.
[69] S. Murakami, S. Kurihara, N. Koikawa, A. Nakamura, K. Aoki, H. Yosigi, K. Sawaki, M. Ohtani, Biosci. Biotechnol. Biochem. 73 (2009) 817–821.
[70] S. Murakami, S. Kurihara, C.A. Titchenal, M. Ohtani, J. Int. Soc. Sports Nutr. 7 (2010) 23.
[71] S. Kurihara, S. Shibahara, H. Arisaka, Y. Akiyama, J. Vet. Med. Sci. 69 (2007) 1263–1270.
[72] S. Kurihara, T. Shibakusa, K.A. Tanaka, Springerplus 2 (2013) 635.
[73] S. Kurihara, T. Hiraoka, M. Akutsu, E. Sukegawa, M. Bannai, S. Shibahara, J. Amino Acids 2010 (2010) 307475.
[74] H.-J. Liu, L. Wang, L. Kang, J. Du, S. Li, H.-X. Cui, Cell. Physiol. Biochem. 51 (2018) 528–542.
[75] E.S. Son, J.-W. Park, Y.J. Kim, S.H. Jeong, J.H. Hong, S.-H. Kim, S.Y. Kyung, Toxicol. In Vitro 67 (2020) 104883.
[76] A. Langston-Cox, D. Anderson, D.J. Creek, K. Palmer, E.M. Wallace, S.A. Marshall, Molecules 25 (2020).
[77] M.D. Borges-Santos, F. Moreto, P.C.M. Pereira, Y. Ming-Yu, R.C. Burini, Nutrition 28 (2012) 753–756.
[78] S. Xie, L. Tian, J. Niu, G. Liang, Y. Liu, Fish Physiol. Biochem. 43 (2017) 1011–1020.