Olivex® Olive Fruit Extract

OLIVE FRUIT COMMON NAME

Olive

TOP BENEFITS OF OLIVE FRUIT

Supports cognitive functions*
Supports antioxidant defenses*
Supports the gut microbiota*
Supports healthy aging*

WHAT IS OLIVE FRUIT?

Olivex® is an olive fruit extract made from French olives (Olea europea), with about 380 pounds of olives needed to make 1 pound of the extract. This concentration is needed to create an olive fruit extract standardized for olive polyphenols. Olive oil is one of the foods that is thought to be responsible for some of the health and other benefits associated with eating a Mediterranean diet. Although olive oil polyphenols are present in low amounts in olive oil, they seem to be of great importance when it comes to the health benefits. In animal and human studies, olive polyphenols have been receiving attention for heart and brain health, as well as healthy aging. Hydroxytyrosol and tyrosol are the major polyphenolic compounds of olives responsible for much of the benefits of olives; other important bioactive compounds include oleuropein, oleocanthal and oleacein, for example [1,2].

NEUROHACKER’S OLIVE FRUIT SOURCING

Olivex® is an olive fruit extract from olives grown and harvested in southern France.

Olivex® is triple standardized for (1) hydroxytyrosol ≥6%; (2) tyrosol ≥1%; and (3) total polyphenols as tyrosol equivalents ≥15%.

Olivex® is a trademark of GRAP’SUD, a French company, located at the heart of the Mediterranean area, whose specialization is the extraction of grape and olive polyphenols.

Olivex® is non-GMO and Vegan.

OLIVE FRUIT DOSING PRINCIPLES AND RATIONALE

GRAP’SUD, the maker of Olivex®, suggests a dose of 100 mg of Olivex®, which they’d consider to be the equivalent of eating about 1.8 ounces (50 grams) of fresh olives. This olive fruit extract has been standardized to contain both hydroxytyrosol and tyrosol, and as well as total polyphenols as tyrosol equivalents ≥15%. In general, Neurohacker Collective thinks of polyphenols as hormetic; something that in low to moderate amounts helps promote an adaptive response to stress, but which might not work as well at very high doses (see Neurohacker Dosing Principles). Our goal with Olivex®, as with all ingredient choices, is to select the appropriate dose keeping in mind both the ingredient and the other ingredients being used in a formulation. In other words, if we are also supplying other extracts with complimentary polyphenols, we are likely to use less Olivex® than if the only polyphenol-containing ingredient we were using was Olivex®. That said, you’ll see an amount of Olivex® in our formulations that would be close to the suggested dose even if combined with other polyphenol-rich ingredients.

OLIVE FRUIT KEY MECHANISMS

Brain function

Supports learning and memory [3,4]

Supports brain-derived neurotrophic factor (BDNF) [5–8]

Supports brain insulin signaling [9]

Supports neurogenesis [10]

Supports the proliferation of neural stem and progenitor cells [10]

Supports cerebral blood flow [6]

Regulates serotonin levels [3]

Regulates dopamine levels [3]

Supports neuroprotective functions [9,11–13]

Supports cognitive functions [6,7,11,14,15]

Supports brain autophagy [4,11]

Supports brain mitochondrial function [7,12–14,16]

Supports antioxidant defenses [3,12,15–18]

Supports brain energy metabolism [14]

Supports Nrf2 signaling [7,19]

Supports brain phase II detoxifying/antioxidant enzymes [7,19]

Stress

Supports healthy behavioral and physiological responses to stress [3,8]

Antioxidant defenses

Counters oxidative stress [19–22]

Supports antioxidant defenses [21,23]

Supports Nrf2 signaling [19,23]

Supports phase II detox enzymes [19,23,24]

Gut microbiota

Supports the composition of the gut microbiota [20,25–28]

Supports intestinal epithelial barrier integrity and homeostasis [28–30] 

Healthy aging and longevity

Supports heart health [31]

Supports metabolic function [30,32–34]

Supports liver function [35]

Supports mitochondrial function and biogenesis [19,22,33,36]

Supports PGC1α [19,36]

Supports SIRT1 activity [14,19,23,24,37–39]

Supports AMPK signaling [19,21,36,40]

Downregulates mTOR signaling [9,37,40]

Supports autophagy [24,37,38,40]

REFERENCES 

[1] G. Serreli, M. Deiana, Antioxidants (Basel) 7 (2018).

[2] A. Karković Marković, J. Torić, M. Barbarić, C. Jakobušić Brala, Molecules 24 (2019).

[3] M.A.R. Cheema, K. Mahmood, D.J. Haleem, R.A. Khan, J Nutraceuticals Food Sci 3 (2018) 4.

[4] D. Pantano, I. Luccarini, P. Nardiello, M. Servili, M. Stefani, F. Casamenti, Br. J. Clin. Pharmacol. 83 (2017) 54–62.

[5] S. De Nicoló, L. Tarani, M. Ceccanti, M. Maldini, F. Natella, A. Vania, G.N. Chaldakov, M. Fiore, Nutrition 29 (2013) 681–687.

[6] J. Calahorra, J. Shenk, V.H. Wielenga, V. Verweij, B. Geenen, P.J. Dederen, M.Á. Peinado, E. Siles, M. Wiesmann, A.J. Kiliaan, Nutrients 11 (2019).

[7] A. Zheng, H. Li, K. Cao, J. Xu, X. Zou, Y. Li, C. Chen, J. Liu, Z. Feng, J. Nutr. Biochem. 26 (2015) 190–199.

[8] J.O. Fajemiroye, P.M. Galdino, I.F. Florentino, F.F. Da Rocha, P.C. Ghedini, P.R. Polepally, J.K. Zjawiony, E.A. Costa, J. Psychopharmacol. 28 (2014) 923–934.

[9] M.C. Crespo, J. Tomé-Carneiro, C. Pintado, A. Dávalos, F. Visioli, E. Burgos-Ramos, Biofactors 43 (2017) 540–548.

[10] G. D’Andrea, M. Ceccarelli, R. Bernini, M. Clemente, L. Santi, C. Caruso, L. Micheli, F. Tirone, FASEB J. (2020).

[11] P. Nardiello, D. Pantano, A. Lapucci, M. Stefani, F. Casamenti, J. Alzheimers. Dis. 63 (2018) 1161–1172.

[12] S. Schaffer, M. Podstawa, F. Visioli, P. Bogani, W.E. Müller, G.P. Eckert, J. Agric. Food Chem. 55 (2007) 5043–5049.

[13] M. Soni, C. Prakash, S. Sehwag, V. Kumar, J. Biochem. Mol. Toxicol. 31 (2017).

[14] M. Reutzel, R. Grewal, C. Silaidos, J. Zotzel, S. Marx, J. Tretzel, G.P. Eckert, Oxid. Med. Cell. Longev. 2018 (2018) 4070935.

[15] V. Pitozzi, M. Jacomelli, D. Catelan, M. Servili, A. Taticchi, A. Biggeri, P. Dolara, L. Giovannelli, Rejuvenation Res. 15 (2012) 601–612.

[16] Y. Peng, C. Hou, Z. Yang, C. Li, L. Jia, J. Liu, Y. Tang, L. Shi, Y. Li, J. Long, J. Liu, Mol. Nutr. Food Res. 60 (2016) 2331–2342.

[17] J.P. De La Cruz, M.I. Ruiz-Moreno, A. Guerrero, J.J. Reyes, A. Benitez-Guerrero, J.L. Espartero, J.A. González-Correa, J. Agric. Food Chem. 63 (2015) 5957–5963.

[18] J.J. Reyes, B. Villanueva, J.A. López-Villodres, J.P. De La Cruz, L. Romero, M.D. Rodríguez-Pérez, G. Rodriguez-Gutierrez, J. Fernández-Bolaños, J.A. González-Correa, J. Agric. Food Chem. 65 (2017) 4378–4383.

[19] A. Zheng, H. Li, J. Xu, K. Cao, H. Li, W. Pu, Z. Yang, Y. Peng, J. Long, J. Liu, Z. Feng, Br. J. Nutr. 113 (2015) 1667–1676.

[20] N. Wang, Y. Ma, Z. Liu, L. Liu, K. Yang, Y. Wei, Y. Liu, X. Chen, X. Sun, D. Wen, Free Radic. Biol. Med. 141 (2019) 393–407.

[21] H. Zrelli, M. Matsuoka, S. Kitazaki, M. Zarrouk, H. Miyazaki, Eur. J. Pharmacol. 660 (2011) 275–282.

[22] S. Granados-Principal, N. El-Azem, R. Pamplona, C. Ramirez-Tortosa, M. Pulido-Moran, L. Vera-Ramirez, J.L. Quiles, P. Sanchez-Rovira, A. Naudí, M. Portero-Otin, P. Perez-Lopez, M. Ramirez-Tortosa, Biochem. Pharmacol. 90 (2014) 25–33.

[23] B. Bayram, B. Ozcelik, S. Grimm, T. Roeder, C. Schrader, I.M.A. Ernst, A.E. Wagner, T. Grune, J. Frank, G. Rimbach, Rejuvenation Res. 15 (2012) 71–81.

[24] T. Sun, Q. Chen, S.-Y. Zhu, Q. Wu, C.-R. Liao, Z. Wang, X.-H. Wu, H.-T. Wu, J.-T. Chen, Int. J. Mol. Med. 44 (2019) 1531–1540.

[25] C. Giuliani, M. Marzorati, M. Daghio, A. Franzetti, M. Innocenti, T. Van de Wiele, N. Mulinacci, Molecules 24 (2019).

[26] M. Hidalgo, I. Prieto, H. Abriouel, A.B. Villarejo, M. Ramírez-Sánchez, A. Cobo, N. Benomar, A. Gálvez, M. Martínez-Cañamero, Plant Foods Hum. Nutr. 73 (2018) 1–6.

[27] I. Prieto, M. Hidalgo, A.B. Segarra, A.M. Martínez-Rodríguez, A. Cobo, M. Ramírez, H. Abriouel, A. Gálvez, M. Martínez-Cañamero, PLoS One 13 (2018) e0190368.

[28] Z. Liu, N. Wang, Y. Ma, D. Wen, Front. Microbiol. 10 (2019) 390.

[29] M. Deiana, G. Serra, G. Corona, Food Funct. 9 (2018) 4085–4099.

[30] C. Pirozzi, A. Lama, R. Simeoli, O. Paciello, T.B. Pagano, M.P. Mollica, F. Di Guida, R. Russo, S. Magliocca, R.B. Canani, G.M. Raso, A. Calignano, R. Meli, J. Nutr. Biochem. 30 (2016) 108–115.

[31] G. Marcelino, P.A. Hiane, K. de C. Freitas, L.F. Santana, A. Pott, J.R. Donadon, R. de C.A. Guimarães, Nutrients 11 (2019).

[32] N. Wang, Y. Liu, Y. Ma, D. Wen, J. Nutr. Biochem. 57 (2018) 180–188.

[33] K. Cao, J. Xu, X. Zou, Y. Li, C. Chen, A. Zheng, H. Li, H. Li, I.M.-Y. Szeto, Y. Shi, J. Long, J. Liu, Z. Feng, Free Radic. Biol. Med. 67 (2014) 396–407.

[34] N. Peroulis, V.P. Androutsopoulos, G. Notas, S. Koinaki, E. Giakoumaki, A. Spyros, Ε. Manolopoulou, S. Kargaki, M. Tzardi, E. Moustou, E.G. Stephanou, E. Bakogeorgou, N. Malliaraki, M. Niniraki, C. Lionis, E. Castanas, M. Kampa, Eur. J. Nutr. 58 (2019) 2545–2560.

[35] H. Kang, S. Koppula, Indian J. Pharm. Sci. 76 (2014) 274–280.

[36] J. Hao, W. Shen, G. Yu, H. Jia, X. Li, Z. Feng, Y. Wang, P. Weber, K. Wertz, E. Sharman, J. Liu, J. Nutr. Biochem. 21 (2010) 634–644.

[37] W. Wang, T. Jing, X. Yang, Y. He, B. Wang, Y. Xiao, C. Shang, J. Zhang, R. Lin, Can. J. Physiol. Pharmacol. 96 (2018) 88–96.

[38] S. Cetrullo, S. D’Adamo, S. Guidotti, R.M. Borzì, F. Flamigni, Biochim. Biophys. Acta 1860 (2016) 1181–1191.

[39] S. D’Adamo, S. Cetrullo, S. Guidotti, R.M. Borzì, F. Flamigni, Osteoarthritis Cartilage 25 (2017) 600–610.

[40] S. Rigacci, C. Miceli, C. Nediani, A. Berti, R. Cascella, D. Pantano, P. Nardiello, I. Luccarini, F. Casamenti, M. Stefani, Oncotarget 6 (2015) 35344–35357.