Olivex® Olive Fruit Extract


TOP BENEFITS OF OLIVEX®

Supports healthy brain function*

Supports antioxidant defenses*

Supports the gut microbiota*

Supports healthy aging*


WHAT IS OLIVEX®?

Olivex® is an olive fruit extract made from French olives (Olea europea), with about 380 pounds of olives needed to make 1 pound of the extract. This concentration is needed to create an olive fruit extract standardized for olive polyphenols. Olive oil is one of the foods that is thought to be responsible for some of the health and other benefits associated with eating a Mediterranean diet. Although olive oil polyphenols are present in low amounts in olive oil, they seem to be of great importance when it comes to the health benefits. In animal and human studies, olive polyphenols have been receiving attention for heart and brain health, as well as healthy aging. Hydroxytyrosol and tyrosol are the major polyphenolic compounds of olives responsible for much of the benefits of olives; other important bioactive compounds include oleuropein, oleocanthal and oleacein, for example [1,2].*


NEUROHACKER’S OLIVEX® SOURCING

Olivex® is an olive fruit extract from olives grown and harvested in southern France.

Olivex® is triple standardized for (1) hydroxytyrosol ≥6%; (2) tyrosol ≥1%; and (3) total polyphenols as tyrosol equivalents ≥15%.

Olivex® is a trademark of GRAP’SUD, a French company, located at the heart of the Mediterranean area, whose specialization is the extraction of grape and olive polyphenols.

Olivex® is non-GMO and Vegan.


OLIVEX® FORMULATING PRINCIPLES AND RATIONALE

GRAP’SUD, the maker of Olivex®, suggests a serving of 100 mg of Olivex®, which they’d consider to be the equivalent of eating about 1.8 ounces (50 grams) of fresh olives. This olive fruit extract has been standardized to contain both hydroxytyrosol and tyrosol, and as well as total polyphenols as tyrosol equivalents ≥15%. In general, Neurohacker Collective thinks of polyphenols as hormetic; something that in low to moderate amounts helps promote an adaptive response to stress, but which might not work as well at very high amounts (see Neurohacker Dosing Principles). Our goal with Olivex®, as with all ingredient choices, is to select the appropriate serving keeping in mind both the ingredient and the other ingredients being used in a formulation. In other words, if we are also supplying other extracts with complementary polyphenols, we are likely to use less Olivex® than if the only polyphenol-containing ingredient we were using was Olivex®. That said, you’ll see an amount of Olivex® in our formulations that would be close to the suggested serving even if combined with other polyphenol-rich ingredients.*


OLIVE FRUIT KEY MECHANISMS

Supports brain function*

Supports cognitive function [3–9] (in animals)* 

Supports brain-derived neurotrophic factor (BDNF)* [7,9–11]

Supports brain insulin signaling* [12]

Supports neurogenesis (in animals) [13]

Supports the proliferation of neural stem and progenitor cells* [13]

Supports cerebral blood flow* [7]

Influences serotonin levels* [3]

Influences dopamine levels* [3]

Supports neuroprotective functions* [5,12,14,15]

Supports neural autophagy* [4,5]

Supports brain mitochondrial function* [6,9,14–16]

Supports brain antioxidant defenses* [3,8,14,16–18]

Supports brain energy metabolism* [6]

Supports brain Nrf2 signaling* and phase II detoxifying/antioxidant enzymes* [9,19]


Supports healthy stress responses*

Supports healthy behavioral and physiological responses to stress* [3,11]


Supports antioxidant defenses*

Counters oxidative stress* [19–22]

Supports antioxidant defenses* [21,23]

Supports Nrf2 signaling and phase II detox enzymes* [19,23,24]


Supports a healthy gut microbiota*

Supports the composition of the gut microbiota* [20,25–28]

Supports intestinal epithelial barrier integrity and homeostasis* [28–30] 


Promotes healthy aging and longevity*

Supports heart health* [31]

Supports healthy metabolic function* [30,32–34]

Supports liver function* [35]

Supports mitochondrial function and biogenesis* [19,22,33,36]

Supports PGC1α signaling* [19,36]

Supports SIRT1 signaling* [6,19,23,24,37–39]

Supports AMPK signaling* [19,21,36,40]

Influences mTOR signaling* [12,37,40]

Supports autophagy* [24,37,38,40]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES 

[1]G. Serreli, M. Deiana, Antioxidants (Basel) 7 (2018).

[2]A. Karković Marković, J. Torić, M. Barbarić, C. Jakobušić Brala, Molecules 24 (2019).

[3]M.A.R. Cheema, K. Mahmood, D.J. Haleem, R.A. Khan, J Nutraceuticals Food Sci 3 (2018) 4.

[4]D. Pantano, I. Luccarini, P. Nardiello, M. Servili, M. Stefani, F. Casamenti, Br. J. Clin. Pharmacol. 83 (2017) 54–62.

[5]P. Nardiello, D. Pantano, A. Lapucci, M. Stefani, F. Casamenti, J. Alzheimers. Dis. 63 (2018) 1161–1172.

[6]M. Reutzel, R. Grewal, C. Silaidos, J. Zotzel, S. Marx, J. Tretzel, G.P. Eckert, Oxid. Med. Cell. Longev. 2018 (2018) 4070935.

[7]J. Calahorra, J. Shenk, V.H. Wielenga, V. Verweij, B. Geenen, P.J. Dederen, M.Á. Peinado, E. Siles, M. Wiesmann, A.J. Kiliaan, Nutrients 11 (2019).

[8]V. Pitozzi, M. Jacomelli, D. Catelan, M. Servili, A. Taticchi, A. Biggeri, P. Dolara, L. Giovannelli, Rejuvenation Res. 15 (2012) 601–612.

[9]A. Zheng, H. Li, K. Cao, J. Xu, X. Zou, Y. Li, C. Chen, J. Liu, Z. Feng, J. Nutr. Biochem. 26 (2015) 190–199.

[10]S. De Nicoló, L. Tarani, M. Ceccanti, M. Maldini, F. Natella, A. Vania, G.N. Chaldakov, M. Fiore, Nutrition 29 (2013) 681–687.

[11]J.O. Fajemiroye, P.M. Galdino, I.F. Florentino, F.F. Da Rocha, P.C. Ghedini, P.R. Polepally, J.K. Zjawiony, E.A. Costa, J. Psychopharmacol. 28 (2014) 923–934.

[12]M.C. Crespo, J. Tomé-Carneiro, C. Pintado, A. Dávalos, F. Visioli, E. Burgos-Ramos, Biofactors 43 (2017) 540–548.

[13]G. D’Andrea, M. Ceccarelli, R. Bernini, M. Clemente, L. Santi, C. Caruso, L. Micheli, F. Tirone, FASEB J. (2020).

[14]S. Schaffer, M. Podstawa, F. Visioli, P. Bogani, W.E. Müller, G.P. Eckert, J. Agric. Food Chem. 55 (2007) 5043–5049.

[15]M. Soni, C. Prakash, S. Sehwag, V. Kumar, J. Biochem. Mol. Toxicol. 31 (2017).

[16]Y. Peng, C. Hou, Z. Yang, C. Li, L. Jia, J. Liu, Y. Tang, L. Shi, Y. Li, J. Long, J. Liu, Mol. Nutr. Food Res. 60 (2016) 2331–2342.

[17]J.P. De La Cruz, M.I. Ruiz-Moreno, A. Guerrero, J.J. Reyes, A. Benitez-Guerrero, J.L. Espartero, J.A. González-Correa, J. Agric. Food Chem. 63 (2015) 5957–5963.

[18]J.J. Reyes, B. Villanueva, J.A. López-Villodres, J.P. De La Cruz, L. Romero, M.D. Rodríguez-Pérez, G. Rodriguez-Gutierrez, J. Fernández-Bolaños, J.A. González-Correa, J. Agric. Food Chem. 65 (2017) 4378–4383.

[19]A. Zheng, H. Li, J. Xu, K. Cao, H. Li, W. Pu, Z. Yang, Y. Peng, J. Long, J. Liu, Z. Feng, Br. J. Nutr. 113 (2015) 1667–1676.

[20]N. Wang, Y. Ma, Z. Liu, L. Liu, K. Yang, Y. Wei, Y. Liu, X. Chen, X. Sun, D. Wen, Free Radic. Biol. Med. 141 (2019) 393–407.

[21]H. Zrelli, M. Matsuoka, S. Kitazaki, M. Zarrouk, H. Miyazaki, Eur. J. Pharmacol. 660 (2011) 275–282.

[22]S. Granados-Principal, N. El-Azem, R. Pamplona, C. Ramirez-Tortosa, M. Pulido-Moran, L. Vera-Ramirez, J.L. Quiles, P. Sanchez-Rovira, A. Naudí, M. Portero-Otin, P. Perez-Lopez, M. Ramirez-Tortosa, Biochem. Pharmacol. 90 (2014) 25–33.

[23]B. Bayram, B. Ozcelik, S. Grimm, T. Roeder, C. Schrader, I.M.A. Ernst, A.E. Wagner, T. Grune, J. Frank, G. Rimbach, Rejuvenation Res. 15 (2012) 71–81.

[24]T. Sun, Q. Chen, S.-Y. Zhu, Q. Wu, C.-R. Liao, Z. Wang, X.-H. Wu, H.-T. Wu, J.-T. Chen, Int. J. Mol. Med. 44 (2019) 1531–1540.

[25]C. Giuliani, M. Marzorati, M. Daghio, A. Franzetti, M. Innocenti, T. Van de Wiele, N. Mulinacci, Molecules 24 (2019).

[26]M. Hidalgo, I. Prieto, H. Abriouel, A.B. Villarejo, M. Ramírez-Sánchez, A. Cobo, N. Benomar, A. Gálvez, M. Martínez-Cañamero, Plant Foods Hum. Nutr. 73 (2018) 1–6.

[27]I. Prieto, M. Hidalgo, A.B. Segarra, A.M. Martínez-Rodríguez, A. Cobo, M. Ramírez, H. Abriouel, A. Gálvez, M. Martínez-Cañamero, PLoS One 13 (2018) e0190368.

[28]Z. Liu, N. Wang, Y. Ma, D. Wen, Front. Microbiol. 10 (2019) 390.

[29]M. Deiana, G. Serra, G. Corona, Food Funct. 9 (2018) 4085–4099.

[30]C. Pirozzi, A. Lama, R. Simeoli, O. Paciello, T.B. Pagano, M.P. Mollica, F. Di Guida, R. Russo, S. Magliocca, R.B. Canani, G.M. Raso, A. Calignano, R. Meli, J. Nutr. Biochem. 30 (2016) 108–115.

[31]G. Marcelino, P.A. Hiane, K. de C. Freitas, L.F. Santana, A. Pott, J.R. Donadon, R. de C.A. Guimarães, Nutrients 11 (2019).

[32]N. Wang, Y. Liu, Y. Ma, D. Wen, J. Nutr. Biochem. 57 (2018) 180–188.

[33]K. Cao, J. Xu, X. Zou, Y. Li, C. Chen, A. Zheng, H. Li, H. Li, I.M.-Y. Szeto, Y. Shi, J. Long, J. Liu, Z. Feng, Free Radic. Biol. Med. 67 (2014) 396–407.

[34]N. Peroulis, V.P. Androutsopoulos, G. Notas, S. Koinaki, E. Giakoumaki, A. Spyros, Ε. Manolopoulou, S. Kargaki, M. Tzardi, E. Moustou, E.G. Stephanou, E. Bakogeorgou, N. Malliaraki, M. Niniraki, C. Lionis, E. Castanas, M. Kampa, Eur. J. Nutr. 58 (2019) 2545–2560.

[35]H. Kang, S. Koppula, Indian J. Pharm. Sci. 76 (2014) 274–280.

[36]J. Hao, W. Shen, G. Yu, H. Jia, X. Li, Z. Feng, Y. Wang, P. Weber, K. Wertz, E. Sharman, J. Liu, J. Nutr. Biochem. 21 (2010) 634–644.

[37]W. Wang, T. Jing, X. Yang, Y. He, B. Wang, Y. Xiao, C. Shang, J. Zhang, R. Lin, Can. J. Physiol. Pharmacol. 96 (2018) 88–96.

[38]S. Cetrullo, S. D’Adamo, S. Guidotti, R.M. Borzì, F. Flamigni, Biochim. Biophys. Acta 1860 (2016) 1181–1191.

[39]S. D’Adamo, S. Cetrullo, S. Guidotti, R.M. Borzì, F. Flamigni, Osteoarthritis Cartilage 25 (2017) 600–610.

[40]S. Rigacci, C. Miceli, C. Nediani, A. Berti, R. Cascella, D. Pantano, P. Nardiello, I. Luccarini, F. Casamenti, M. Stefani, Oncotarget 6 (2015) 35344–35357.