Polygonum cuspidatum Root Extract (95% Resveratrol)

POLYGONUM CUSPIDATUM COMMON NAME

Japanese Knotweed | Mexican Bamboo

TOP BENEFITS OF POLYGONUM CUSPIDATUM ROOT EXTRACT (95% RESVERATROL)

  • Supports general immune health*
  • Supports healthy aging*
  • Supports cognitive function*
  • Supports mood*

WHAT IS POLYGONUM CUSPIDATUM ROOT EXTRACT (95% RESVERATROL)?

Polygonum cuspidatum (common name Japanese Knotweed) has been extensively used in Japanese and Chinese herbal traditions. The roots are a good source of resveratrol, which has led to this plant being used to produce standardized resveratrol extracts. Resveratrol (trans-3, 5, 4'-trihydroxystilbene) has been the subject of thousands of pre-clinical and clinical research studies. It is best known for being a calorie restriction mimetic (i.e., supports healthy aging functions), and for supporting metabolism, heart health, immunity, and cognition. Resveratrol is a defense compound that plants make more of when exposed to environmental stressors. It toughens them up, making them more resistant to stress. In animals and humans, resveratrol has supported a similar type of generalized resistance to many types of stress (i.e., adaptogen properties) when consumed in low amounts.*

NEUROHACKER’S POLYGONUM CUSPIDATUM ROOT EXTRACT (95% RESVERATROL) SOURCING

Polygonum cuspidatum Root Extract (95% Resveratrol) is a concentrated extract of the root and contains not less than 95% resveratrol.

Polygonum cuspidatum Root Extract (95% Resveratrol) is non-GMO, gluten-free and vegan.

POLYGONUM CUSPIDATUM ROOT EXTRACT (95% RESVERATROL) DOSING PRINCIPLES AND RATIONALE

Polygonum cuspidatum Root Extract (95% Resveratrol) is used for its resveratrol content. We don’t view resveratrol as a “more is better” compound. It is a hormetic substance (see Neurohacker Dosing Principles), which we believe, for generally healthy persons, is better to dose in low to moderate amounts. Our goal with resveratrol, as with all ingredient choices, is to select the lowest dose needed to produce desired benefits, especially in the context of other ingredient synergies. Studies have used resveratrol alone in doses as low as 10 mg and as high as several grams. At lower doses, resveratrol seems to signal cells that the environment may be more stressful, which causes cells to adapt in ways that support better function. Immune signaling (i.e., the communication molecules made by white blood cells) is an example, where low amounts of resveratrol have been sufficient to support signaling. 

POLYGONUM CUSPIDATUM ROOT EXTRACT (95% RESVERATROL) KEY MECHANISMS

Brain function

  • Supports cerebral blood flow[1–4]
  • Supports neural stem cell functions[5,6]
  • Supports neurogenesis[5–7]
  • Supports brain-derived neurotrophic factor (BDNF)[7–18]
  • Supports HPA axis signaling[13,18]
  • Supports neuroprotective functions[10,18–21]
  • Supports executive function[2,22]
  • Supports learning and memory (animals)[14,15,17,23]
  • Supports neuroimmune signaling[24]

Cardiovascular function

  • Supports healthy vascular function[25–28]
  • Supports cardiac function[29]

Exercise performance

  • Supports endurance performance[30]
  • Supports muscle structure and function[31,32]
  • Supports glucose uptake in muscles[29]

Metabolic Function

  • Supports healthy insulin sensitivity[27,30,33–37]
  • Supports healthy lipid levels 30,33,38]
  • Supports thermogenesis[30]
  • Supports adiponectin levels[38]

Immune function

  • Supports innate immunity[39–52]
  • Supports adaptive immunity[46,53–58]
  • Supports cellular intrinsic immune defenses[59–68] 
  • Supports mucosal immunity[69–71]
  • Supports immune tolerance[46,54–58,72–78]
  • Supports immune signaling[54,79–86]
  • Supports healthy natural killer cell function[45,48–51,87–90] 
  • Supports healthy neutrophil function[45,52,71,91–95]
  • Supports healthy macrophage function[46,47,96,97]
  • Supports healthy microglial function[98–108]
  • Supports healthy mast cell function[39–44]
  • Supports gamma delta T cell function[54]
  • Supports healthy T cell function[46,54–58]
  • Supports healthy B cell function[109]  

Mitochondrial structure and function

  • Supports peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α)[30,31,33–35,38,110,111]
  • Supports nuclear transcriptional factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF1], NRF2, mitochondrial transcription factor A [TFAM])[30,31,111,112]
  • Supports mitochondrial size and number[30,34]
  • Supports inner mitochondrial membrane folding (cristae)[30]
  • Supports mitochondrial DNA (mtDNA)[30,31,35]
  • Supports mitochondrial membrane potential[31]
  • Supports citrate synthase[30,33]
  • Supports ATP production[31,111]
  • Supports NAD+ pool[31,35,113]
  • Supports components of the electron transport chain - complex I-V[31]
  • Supports β-oxidation[30,38,113,114]

Signaling pathways

  • Supports AMPK signaling[31,33–36,38,111,113,115]
  • Supports liver kinase B1 (LKB1) signaling[31,111]
  • Supports peroxisome proliferator-activated receptor alpha (PPARα)[30]
  • Supports peroxisome proliferator-activated receptor gamma (PPARγ)[38]
  • Supports estrogen-related receptor alpha (ERRα)[30,35]
  • Supports forkhead transcription factor O 1 (FOXO1)[38]
  • Downregulates phosphodiesterase (PDE) 1 and 4  and supports adenylate cyclase/cAMP levels[113,116]

Antioxidant defenses

  • Supports antioxidant activity[21,35,37,38,112,113,117,118]
  • Supports antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx])[25,26]
  • Downregulates pro-oxidant enzymes (NADPH oxidase)[25,26]
  • Supports Nrf2[119–129]

Gut microbiota

  • Supports healthy gut microbiota[98,130–149]

Healthy aging and longevity

  • Supports stem cells[150–162]
  • Supports telomerase activity[150–152,163,164]
  • Supports anti-senescence functions[151,152,157,164]
  • Activates SIRT1[31,33,38,110,112,115,165,166]
  • Supports mitochondrial uncoupling proteins UCP1, UCP2, and UCP3[30,35]
  • Supports Klotho[112,166]
  • Supports mTOR signaling[34]
  • Delays age-related physiological changes[29]
  • Extends healthspan (mice on a high-calorie diet, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae)[28,34,165,167,168]

Circadian rhythms

  • Supports circadian rhythms[169–172]
  • Supports clock gene expression[169,172]

Ingredient Synergies

  • Apigenin - resveratrol is an apigenin bioenhancer[173]
  • Piperine as a bioenhance[73,174–177] and for cognitive function[178]
  • Hawthorn for heart function support[179]
  • Inositol for metabolic health[180]

References 

[1] D.O. Kennedy, E.L. Wightman, J.L. Reay, G. Lietz, E.J. Okello, A. Wilde, C.F. Haskell, Am. J. Clin. Nutr. 91 (2010) 1590–1597.
[2] R.H.X. Wong, D. Raederstorff, P.R.C. Howe, Nutrients 8 (2016).
[3] E.L. Wightman, C.F. Haskell-Ramsay, J.L. Reay, G. Williamson, T. Dew, W. Zhang, D.O. Kennedy, Br. J. Nutr. 114 (2015) 1427–1437.
[4] H.M. Evans, P.R.C. Howe, R.H.X. Wong, Nutrients 9 (2017).
[5] L. Xu, Y. Yang, L. Gao, J. Zhao, Y. Cai, J. Huang, S. Jing, X. Bao, Y. Wang, J. Gao, H. Xu, X. Fan, Biochim. Biophys. Acta 1852 (2015) 1298–1310.
[6] N.B. Bottari, M.R.C. Schetinger, M.M. Pillat, T.V. Palma, H. Ulrich, M.S. Alves, V.M. Morsch, C. Melazzo, L.D. de Barros, J.L. Garcia, A.S. Da Silva, Mol. Neurobiol. 56 (2019) 2328–2338.
[7] S. Madhyastha, S. Sekhar, G. Rao, Int. J. Dev. Neurosci. 31 (2013) 580–585.
[8] M. Wiciński, M. Socha, M. Walczak, E. Wódkiewicz, B. Malinowski, S. Rewerski, K. Górski, K. Pawlak-Osińska, Nutrients 10 (2018).
[9] M. Rahvar, M. Nikseresht, S.M. Shafiee, F. Naghibalhossaini, M. Rasti, M.R. Panjehshahin, A.A. Owji, Neurochem. Res. 36 (2011) 761–765.
[10] L. Ge, L. Liu, H. Liu, S. Liu, H. Xue, X. Wang, L. Yuan, Z. Wang, D. Liu, Eur. J. Pharmacol. 768 (2015) 49–57.
[11] G. Li, G. Wang, J. Shi, X. Xie, N. Fei, L. Chen, N. Liu, M. Yang, J. Pan, W. Huang, Y. Xu, Neuropharmacology 133 (2018) 181–188.
[12] X.-H. Yang, S.-Q. Song, Y. Xu, Neuropsychiatr. Dis. Treat. 13 (2017) 2727–2736.
[13] S.H. Ali, R.M. Madhana, A. K V., E.R. Kasala, L.N. Bodduluru, S. Pitta, J.R. Mahareddy, M. Lahkar, Steroids 101 (2015) 37–42.
[14] J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Endocrine Journal 62 (2015) 927–938.
[15] Y.-N. Zhao, W.-F. Li, F. Li, Z. Zhang, Y.-D. Dai, A.-L. Xu, C. Qi, J.-M. Gao, J. Gao, Biochem. Biophys. Res. Commun. 435 (2013) 597–602.
[16] J. Song, S.Y. Cheon, W. Jung, W.T. Lee, J.E. Lee, Int. J. Mol. Sci. 15 (2014) 15512–15529.
[17] J. Shen, L. Xu, C. Qu, H. Sun, J. Zhang, Behav. Brain Res. 349 (2018) 1–7.
[18] C. Pang, L. Cao, F. Wu, L. Wang, G. Wang, Y. Yu, M. Zhang, L. Chen, W. Wang, W. Lv, L. Chen, J. Zhu, J. Pan, H. Zhang, Y. Xu, L. Ding, Neuropharmacology 97 (2015) 447–456.
[19] G. Wang, L. Chen, X. Pan, J. Chen, L. Wang, W. Wang, R. Cheng, F. Wu, X. Feng, Y. Yu, H.-T. Zhang, J.M. O’Donnell, Y. Xu, Oncotarget 7 (2016).
[20] Q. Zhang, X. Wang, X. Bai, Y. Xie, T. Zhang, S. Bo, X. Chen, Mol. Med. Rep. 16 (2017) 2095–2100.
[21] R. Moldzio, K. Radad, C. Krewenka, B. Kranner, J.C. Duvigneau, W.-D. Rausch, J. Neural Transm. 120 (2013) 1271–1280.
[22] S.D. Anton, N. Ebner, J.M. Dzierzewski, Z.Z. Zlatar, M.J. Gurka, V.M. Dotson, J. Kirton, R.T. Mankowski, M. Marsiske, T.M. Manini, J. Altern. Complement. Med. 24 (2018) 725–732.
[23] Y. Yazir, T. Utkan, N. Gacar, F. Aricioglu, Physiol. Behav. 138 (2015) 297–304.
[24] C. Moussa, M. Hebron, X. Huang, J. Ahn, R.A. Rissman, P.S. Aisen, R.S. Turner, J. Neuroinflammation 14 (2017) 1.
[25] G. Spanier, H. Xu, N. Xia, S. Tobias, S. Deng, L. Wojnowski, U. Forstermann, H. Li, J. Physiol. Pharmacol. 60 Suppl 4 (2009) 111–116.
[26] N. Xia, A. Daiber, A. Habermeier, E.I. Closs, T. Thum, G. Spanier, Q. Lu, M. Oelze, M. Torzewski, K.J. Lackner, T. Münzel, U. Förstermann, H. Li, J. Pharmacol. Exp. Ther. 335 (2010) 149–154.
[27] J.P. Crandall, V. Oram, G. Trandafirescu, M. Reid, P. Kishore, M. Hawkins, H.W. Cohen, N. Barzilai, J. Gerontol. A Biol. Sci. Med. Sci. 67 (2012) 1307–1312.
[28] K.J. Pearson, J.A. Baur, K.N. Lewis, L. Peshkin, N.L. Price, N. Labinskyy, W.R. Swindell, D. Kamara, R.K. Minor, E. Perez, H.A. Jamieson, Y. Zhang, S.R. Dunn, K. Sharma, N. Pleshko, L.A. Woollett, A. Csiszar, Y. Ikeno, D. Le Couteur, P.J. Elliott, K.G. Becker, P. Navas, D.K. Ingram, N.S. Wolf, Z. Ungvari, D.A. Sinclair, R. de Cabo, Cell Metab. 8 (2008) 157–168.
[29] J.L. Barger, T. Kayo, J.M. Vann, E.B. Arias, J. Wang, T.A. Hacker, Y. Wang, D. Raederstorff, J.D. Morrow, C. Leeuwenburgh, D.B. Allison, K.W. Saupe, G.D. Cartee, R. Weindruch, T.A. Prolla, PLoS One 3 (2008) e2264.
[30] M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109–1122.
[31] N.L. Price, A.P. Gomes, A.J.Y. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, B.P. Hubbard, A.T. Varela, J.G. Davis, B. Varamini, A. Hafner, R. Moaddel, A.P. Rolo, R. Coppari, C.M. Palmeira, R. de Cabo, J.A. Baur, D.A. Sinclair, Cell Metab. 15 (2012) 675–690.
[32] J.-P.K. Hyatt, L. Nguyen, A.E. Hall, A.M. Huber, J.C. Kocan, J.A. Mattison, R. de Cabo, J.R. LaRocque, R.J. Talmadge, Front. Physiol. 7 (2016) 77.
[33] S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen, Cell Metab. 14 (2011) 612–622.
[34] J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Nature 444 (2006) 337–342.
[35] J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554–563.
[36] C.E. Park, M.-J. Kim, J.H. Lee, B.-I. Min, H. Bae, W. Choe, S.-S. Kim, J. Ha, Exp. Mol. Med. 39 (2007) 222–229.
[37] P. Brasnyó, G.A. Molnár, M. Mohás, L. Markó, B. Laczy, J. Cseh, E. Mikolás, I.A. Szijártó, A. Mérei, R. Halmai, L.G. Mészáros, B. Sümegi, I. Wittmann, Br. J. Nutr. 106 (2011) 383–389.
[38] J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833–42.
[39] J. Li, B. Wang, Y. Luo, Q. Zhang, Y. Bian, R. Wang, Mol. Immunol. 122 (2020) 156–162.
[40] Y.-F. Zhang, Q.-M. Liu, Y.-Y. Gao, B. Liu, H. Liu, M.-J. Cao, X.-W. Yang, G.-M. Liu, Food Funct. 10 (2019) 2030–2039.
[41] S.-Y. Han, J.-Y. Bae, S.-H. Park, Y.-H. Kim, J.H.Y. Park, Y.-H. Kang, J. Nutr. 143 (2013) 632–639.
[42] D.M. André, M.C. Calixto, C. Sollon, E.C. Alexandre, L.O. Leiria, N. Tobar, G.F. Anhê, E. Antunes, Int. Immunopharmacol. 38 (2016) 298–305.
[43] K. Bozdemir, E. Şahin, N. Altintoprak, N.B. Muluk, B.P. Cengiz, M. Acar, C. Cingi, Clin. Invest. Med. 39 (2016) E63–72.
[44] J. Chen, H. Zhou, J. Wang, B. Zhang, F. Liu, J. Huang, J. Li, J. Lin, J. Bai, R. Liu, Int. Immunopharmacol. 25 (2015) 43–48.
[45] Y. Nakagami, S. Suzuki, J.L. Espinoza, L. Vu Quang, M. Enomoto, S. Takasugi, A. Nakamura, T. Nakayama, H. Tani, I. Hanamura, A. Takami, Nutrients 11 (2019).
[46] M. Shabani, A. Sadeghi, H. Hosseini, M. Teimouri, R. Babaei Khorzoughi, P. Pasalar, R. Meshkani, Sci. Rep. 10 (2020) 3791.
[47] S. Liu, Y. Du, K. Shi, Y. Yang, Z. Yang, Am. J. Transl. Res. 11 (2019) 5212–5226.
[48] C. Leischner, M. Burkard, M.M. Pfeiffer, U.M. Lauer, C. Busch, S. Venturelli, Nutr. J. 15 (2016) 47.
[49] Q. Li, T. Huyan, L.-J. Ye, J. Li, J.-L. Shi, Q.-S. Huang, J. Agric. Food Chem. 62 (2014) 10928–10935.
[50] T. Li, G.-X. Fan, W. Wang, T. Li, Y.-K. Yuan, Int. Immunopharmacol. 7 (2007) 1221–1231.
[51] R. Falchetti, M.P. Fuggetta, G. Lanzilli, M. Tricarico, G. Ravagnan, Life Sci. 70 (2001) 81–96.
[52] T.-H. Huang, C.-C. Chen, H.-M. Liu, T.-Y. Lee, S.-H. Shieh, Sci. Rep. 7 (2017) 2705.
[53] C. Zhang, Y. Tian, F. Yan, X. Kang, R. Han, G. Sun, H. Zhang, Am. J. Vet. Res. 75 (2014) 752–759.
[54] J.L. Espinoza, L.Q. Trung, P.T. Inaoka, K. Yamada, D.T. An, S. Mizuno, S. Nakao, A. Takami, Oxid. Med. Cell. Longev. 2017 (2017) 6781872.
[55] N.-H. Guo, X. Fu, F.-M. Zi, Y. Song, S. Wang, J. Cheng, Int. Immunopharmacol. 73 (2019) 181–192.
[56] B.B.-C. Weng, W.-S. Lin, J.-C. Chang, R.Y.-Y. Chiou, Int. J. Mol. Med. 38 (2016) 1895–1904.
[57] H. Yang, A. Zhang, Y. Zhang, S. Ma, C. Wang, J. Stroke Cerebrovasc. Dis. 25 (2016) 1914–1921.
[58] J. Yao, C. Wei, J.-Y. Wang, R. Zhang, Y.-X. Li, L.-S. Wang, World J. Gastroenterol. 21 (2015) 6572–6581.
[59] A. Paemanee, A. Hitakarun, S. Roytrakul, D.R. Smith, BMC Res. Notes 11 (2018) 307.
[60] N. Zainal, C.-P. Chang, Y.-L. Cheng, Y.-W. Wu, R. Anderson, S.-W. Wan, C.-L. Chen, T.-S. Ho, S. AbuBakar, Y.-S. Lin, Sci. Rep. 7 (2017) 42998.
[61] A. Mohd, N. Zainal, K.-K. Tan, S. AbuBakar, Sci. Rep. 9 (2019) 14336.
[62] S.-C. Lin, C.-T. Ho, W.-H. Chuo, S. Li, T.T. Wang, C.-C. Lin, BMC Infect. Dis. 17 (2017) 144.
[63] P. Mastromarino, D. Capobianco, F. Cannata, C. Nardis, E. Mattia, A. De Leo, R. Restignoli, A. Francioso, L. Mosca, Antiviral Res. 123 (2015) 15–21.
[64] C.-J. Lin, H.-J. Lin, T.-H. Chen, Y.-A. Hsu, C.-S. Liu, G.-Y. Hwang, L. Wan, PLoS One 10 (2015) e0117602.
[65] C.L. Clouser, J. Chauhan, M.A. Bess, J.L. van Oploo, D. Zhou, S. Dimick-Gray, L.M. Mansky, S.E. Patterson, Bioorg. Med. Chem. Lett. 22 (2012) 6642–6646.
[66] J.L. Espinoza, A. Takami, L.Q. Trung, S. Kato, S. Nakao, PLoS One 7 (2012) e51306.
[67] J.J. Docherty, M.M. Fu, J.M. Hah, T.J. Sweet, S.A. Faith, T. Booth, Antiviral Res. 67 (2005) 155–162.
[68] J.J. Docherty, M.M. Fu, B.S. Stiffler, R.J. Limperos, C.M. Pokabla, A.L. DeLucia, Antiviral Res. 43 (1999) 145–155.
[69] Z. Gan, W. Wei, Y. Li, J. Wu, Y. Zhao, L. Zhang, T. Wang, X. Zhong, Molecules 24 (2019).
[70] J. Al Azzaz, A. Rieu, V. Aires, D. Delmas, J. Chluba, P. Winckler, M.-A. Bringer, J. Lamarche, D. Vervandier-Fasseur, F. Dalle, P. Lapaquette, J. Guzzo, Front. Immunol. 9 (2018) 3149.
[71] Y. Mayangsari, T. Suzuki, J. Agric. Food Chem. 66 (2018) 12666–12674.
[72] A.L. de B. Oliveira, V.V.S. Monteiro, K.C. Navegantes-Lima, J.F. Reis, R. de S. Gomes, D.V.S. Rodrigues, S.L. de F. Gaspar, M.C. Monteiro, Nutrients 9 (2017).
[73] N. Pannu, A. Bhatnagar, Inflammopharmacology 28 (2020) 719–735.
[74] K.A.O. Gandy, J. Zhang, P. Nagarkatti, M. Nagarkatti, J. Neuroimmune Pharmacol. 14 (2019) 462–477.
[75] Z.-L. Wang, X.-F. Luo, M.-T. Li, D. Xu, S. Zhou, H.-Z. Chen, N. Gao, Z. Chen, L.-L. Zhang, X.-F. Zeng, PLoS One 9 (2014) e114792.
[76] Z. Fonseca-Kelly, M. Nassrallah, J. Uribe, R.S. Khan, K. Dine, M. Dutt, K.S. Shindler, Front. Neurol. 3 (2012) 84.
[77] K.S. Shindler, E. Ventura, M. Dutt, P. Elliott, D.C. Fitzgerald, A. Rostami, J. Neuroophthalmol. 30 (2010) 328–339.
[78] Z. Wenbin, G. Guojun, West Indian Med. J. 63 (2014) 20–25.
[79] H. Ghanim, C.L. Sia, S. Abuaysheh, K. Korzeniewski, P. Patnaik, A. Marumganti, A. Chaudhuri, P. Dandona, J. Clin. Endocrinol. Metab. 95 (2010) E1–8.
[80] J. Tomé-Carneiro, M. Gonzálvez, M. Larrosa, M.J. Yáñez-Gascón, F.J. García-Almagro, J.A. Ruiz-Ros, M.T. García-Conesa, F.A. Tomás-Barberán, J.C. Espín, Am. J. Cardiol. 110 (2012) 356–363.
[81] R.C.S. Macedo, A. Vieira, D.P. Marin, R. Otton, Chem. Biol. Interact. 227 (2015) 89–95.
[82] H.S. Zahedi, S. Jazayeri, R. Ghiasvand, M. Djalali, M.R. Eshraghian, Int. J. Prev. Med. 4 (2013) S1–4.
[83] E. Jo, R. Bartosh, A.T. Auslander, D. Directo, A. Osmond, M.W. Wong, Sports (Basel) 7 (2019).
[84] S. Bo, V. Ponzo, G. Ciccone, A. Evangelista, F. Saba, I. Goitre, M. Procopio, G.F. Pagano, M. Cassader, R. Gambino, Pharmacol. Res. 111 (2016) 896–905.
[85] A.Z. Javid, R. Hormoznejad, H.A. Yousefimanesh, M.H. Haghighi-Zadeh, M. Zakerkish, Diabetes Metab. Syndr. 13 (2019) 2769–2774.
[86] S. Bo, G. Ciccone, A. Castiglione, R. Gambino, F. De Michieli, P. Villois, M. Durazzo, P. Cavallo-Perin, M. Cassader, Curr. Med. Chem. 20 (2013) 1323–1331.
[87] C.-C. Lu, J.-K. Chen, J. Cell. Physiol. 223 (2010) 343–351.
[88] Y. Fang, E.J. Herrick, M.B. Nicholl, J. Androl. 33 (2012) 752–760.
[89] J. Luis Espinoza, A. Takami, L.Q. Trung, S. Nakao, Cancer Sci. 104 (2013) 657–662.
[90] J. Pan, J. Shen, W. Si, C. Du, D. Chen, L. Xu, M. Yao, P. Fu, W. Fan, Oncotarget 8 (2017) 65743–65758.
[91] A.Y. Göçmen, D. Burgucu, I. Karadoğan, A. Timurağaoğlu, S. Gümüşlü, Exp. Clin. Cardiol. 18 (2013) e111–4.
[92] J.E. Vargas, A.A. Souto, P.M.C. Pitrez, R.T. Stein, B.N. Porto, Med. Hypotheses 96 (2016) 61–65.
[93] L. Jiang, L. Zhang, K. Kang, D. Fei, R. Gong, Y. Cao, S. Pan, M. Zhao, M. Zhao, Biomed. Pharmacother. 84 (2016) 130–138.
[94] Y.-F. Tsai, C.-Y. Chen, W.-Y. Chang, Y.-T. Syu, T.-L. Hwang, Free Radic. Biol. Med. 145 (2019) 67–77.
[95] S. Rotondo, G. Rajtar, S. Manarini, A. Celardo, D. Rotillo, G. de Gaetano, V. Evangelista, C. Cerletti, Br. J. Pharmacol. 123 (1998) 1691–1699.
[96] M. Chen, X. Chen, X. Song, A. Muhammad, R. Jia, Y. Zou, L. Yin, L. Li, C. He, G. Ye, C. Lv, W. Zhang, Z. Yin, Int. Immunopharmacol. 76 (2019) 105876.
[97] C.-C. Lu, H.-C. Lai, S.-C. Hsieh, J.-K. Chen, J. Leukoc. Biol. 83 (2008) 1028–1037.
[98] Y. Ma, S. Liu, H. Shu, J. Crawford, Y. Xing, F. Tao, Brain Behav. Immun. 87 (2020) 455–464.
[99] S. Ma, L. Fan, J. Li, B. Zhang, Z. Yan, Int. J. Neurosci. 130 (2020) 817–825.
[100] L. Feng, L. Zhang, DNA Cell Biol. 38 (2019) 874–879.
[101] J. Yan, A. Luo, J. Gao, X. Tang, Y. Zhao, B. Zhou, Z. Zhou, S. Li, Am. J. Transl. Res. 11 (2019) 1555–1568.
[102] B. Qi, C. Shi, J. Meng, S. Xu, J. Liu, Int. J. Biochem. Cell Biol. 103 (2018) 56–64.
[103] J. Wiedemann, K. Rashid, T. Langmann, Biochem. Biophys. Res. Commun. 501 (2018) 239–245.
[104] X. Zhang, Q. Wu, Q. Zhang, Y. Lu, J. Liu, W. Li, S. Lv, M. Zhou, X. Zhang, C. Hang, Front. Neurosci. 11 (2017) 611.
[105] L.-L. Wang, D.-L. Shi, H.-Y. Gu, M.-Z. Zheng, J. Hu, X.-H. Song, Y.-L. Shen, Y.-Y. Chen, Mol. Med. Rep. 13 (2016) 4051–4057.
[106] L. Tao, Q. Ding, C. Gao, X. Sun, Int. Immunopharmacol. 34 (2016) 165–172.
[107] M. Kodali, V.K. Parihar, B. Hattiangady, V. Mishra, B. Shuai, A.K. Shetty, Sci. Rep. 5 (2015) 8075.
[108] J. Abraham, R.W. Johnson, Rejuvenation Res. 12 (2009) 445–453.
[109] J. Yuan, L. Lu, Z. Zhang, S. Zhang, Rejuvenation Res. 15 (2012) 507–515.
[110] T.D. Scribbans, J.K. Ma, B.A. Edgett, K.A. Vorobej, A.S. Mitchell, J.G.E. Zelt, C.A. Simpson, J. Quadrilatero, B.J. Gurd, Appl. Physiol. Nutr. Metab. 39 (2014) 1305–1313.
[111] B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217–7222.
[112] P. Zhang, Y. Li, Y. Du, G. Li, L. Wang, F. Zhou, Transplant. Proc. 48 (2016) 3378–3386.
[113] S.-J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, J.H. Chung, Cell 148 (2012) 421–433.
[114] J. Most, S. Timmers, I. Warnke, J.W. Jocken, M. van Boekschoten, P. de Groot, I. Bendik, P. Schrauwen, G.H. Goossens, E.E. Blaak, Am. J. Clin. Nutr. 104 (2016) 215–227.
[115] K.P. Goh, H.Y. Lee, D.P. Lau, W. Supaat, Y.H. Chan, A.F.Y. Koh, Int. J. Sport Nutr. Exerc. Metab. 24 (2014) 2–13.
[116] A.M. El-Mowafy, M. Alkhalaf, Carcinogenesis 24 (2003) 869–873.
[117] Y.K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71 (2002) 245–249.
[118] S.S. Leonard, C. Xia, B.-H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, X. Shi, Biochem. Biophys. Res. Commun. 309 (2003) 1017–1026.
[119] T. Farkhondeh, S.L. Folgado, A.M. Pourbagher-Shahri, M. Ashrafizadeh, S. Samarghandian, Biomed. Pharmacother. 127 (2020) 110234.
[120] X. Wang, H. Fang, G. Xu, Y. Yang, R. Xu, Q. Liu, X. Xue, J. Liu, H. Wang, Diabetes Metab. Syndr. Obes. 13 (2020) 1061–1075.
[121] M. Sami-Ur-Rasheed, M.K. Tripathi, D.K. Patel, M.P. Singh, Protein Pept. Lett. (2020).
[122] Z.-M. Sun, P. Guan, L.-F. Luo, L.-Y. Qin, N. Wang, Y.-S. Zhao, E.-S. Ji, Life Sci. 245 (2020) 117362.
[123] H. Hosseini, M. Teimouri, M. Shabani, M. Koushki, R. Babaei Khorzoughi, F. Namvarjah, P. Izadi, R. Meshkani, Int. J. Biochem. Cell Biol. 119 (2020) 105667.
[124] N. Lian, S. Zhang, J. Huang, T. Lin, Q. Lin, Lung 198 (2020) 323–331.
[125] G. Wang, X. Xie, L. Yuan, J. Qiu, W. Duan, B. Xu, X. Chen, Biofactors 46 (2020) 441–453.
[126] G. Xu, X. Zhao, J. Fu, X. Wang, Ann. Palliat. Med. 8 (2019) 565–575.
[127] S. Seyyedebrahimi, H. Khodabandehloo, E. Nasli Esfahani, R. Meshkani, Acta Diabetol. 55 (2018) 341–353.
[128] A.A. Javkhedkar, Y. Quiroz, B. Rodriguez-Iturbe, N.D. Vaziri, M.F. Lokhandwala, A.A. Banday, Am. J. Physiol. Regul. Integr. Comp. Physiol. 308 (2015) R840–6.
[129] B. Wang, J. Sun, L. Li, J. Zheng, Y. Shi, G. Le, Food Funct. 5 (2014) 1452–1463.
[130] Y.-L. Tain, W.-C. Lee, K.L.H. Wu, S. Leu, J.Y.H. Chan, Mol. Nutr. Food Res. (2018) e1800066.
[131] Y. Zheng, W. Wu, G. Hu, L. Qiu, S. Meng, C. Song, L. Fan, Z. Zhao, X. Bing, J. Chen, Fish Shellfish Immunol. 77 (2018) 200–207.
[132] L. Zhao, Q. Zhang, W. Ma, F. Tian, H. Shen, M. Zhou, Food Funct. 8 (2017) 4644–4656.
[133] J.K. Bird, D. Raederstorff, P. Weber, R.E. Steinert, Adv. Nutr. 8 (2017) 839–849.
[134] A.S. Korsholm, T.N. Kjær, M.J. Ornstrup, S.B. Pedersen, Int. J. Mol. Sci. 18 (2017).
[135] M.M. Sung, T.T. Kim, E. Denou, C.-L.M. Soltys, S.M. Hamza, N.J. Byrne, G. Masson, H. Park, D.S. Wishart, K.L. Madsen, J.D. Schertzer, J.R.B. Dyck, Diabetes 66 (2017) 418–425.
[136] M. Larrosa, M.J. Yañéz-Gascón, M.V. Selma, A. González-Sarrías, S. Toti, J.J. Cerón, F. Tomás-Barberán, P. Dolara, J.C. Espín, J. Agric. Food Chem. 57 (2009) 2211–2220.
[137] J.M. Walker, P. Eckardt, J.O. Aleman, J.C. da Rosa, Y. Liang, T. Iizumi, S. Etheve, M.J. Blaser, J. L Breslow, P.R. Holt, Transl. Res. 4 (2019) 122–135.
[138] P. Wang, J. Wang, D. Li, W. Ke, F. Chen, X. Hu, J. Nutr. Biochem. 81 (2020) 108363.
[139] H.R. Alrafas, P.B. Busbee, K.N. Chitrala, M. Nagarkatti, P. Nagarkatti, J. Clin. Med. Res. 9 (2020).
[140] K. Chen, H. Zhao, L. Shu, H. Xing, C. Wang, C. Lu, G. Song, Int. J. Food Sci. Nutr. (2020) 1–14.
[141] P. Wang, J. Gao, W. Ke, J. Wang, D. Li, R. Liu, Y. Jia, X. Wang, X. Chen, F. Chen, X. Hu, Free Radic. Biol. Med. 156 (2020) 83–98.
[142] S. Hui, Y. Liu, L. Huang, L. Zheng, M. Zhou, H. Lang, X. Wang, L. Yi, M. Mi, Int. J. Obes. 44 (2020) 1678–1690.
[143] F. Li, Y. Han, X. Cai, M. Gu, J. Sun, C. Qi, T. Goulette, M. Song, Z. Li, H. Xiao, Food Funct. 11 (2020) 1063–1073.
[144] N. Sreng, S. Champion, J.-C. Martin, S. Khelaifia, J.E. Christensen, R. Padmanabhan, V. Azalbert, V. Blasco-Baque, P. Loubieres, L. Pechere, J.-F. Landrier, R. Burcelin, E. Sérée, J. Nutr. Biochem. 72 (2019) 108218.
[145] H.R. Alrafas, P.B. Busbee, M. Nagarkatti, P.S. Nagarkatti, J. Leukoc. Biol. 106 (2019) 467–480.
[146] J.D. Jaimes, V. Jarosova, O. Vesely, C. Mekadim, J. Mrazek, P. Marsik, J. Killer, K. Smejkal, P. Kloucek, J. Havlik, Molecules 24 (2019).
[147] P. Wang, D. Li, W. Ke, D. Liang, X. Hu, F. Chen, Int. J. Obes. 44 (2020) 213–225.
[148] C.L. Campbell, R. Yu, F. Li, Q. Zhou, D. Chen, C. Qi, Y. Yin, J. Sun, Diabetes Metab. Syndr. Obes. 12 (2019) 97–107.
[149] W. Liao, X. Yin, Q. Li, H. Zhang, Z. Liu, X. Zheng, L. Zheng, X. Feng, Molecules 23 (2018).
[150] V.P. Pearce, J. Sherrell, Z. Lou, L. Kopelovich, W.E. Wright, J.W. Shay, Oncogene 27 (2008) 2365–2374.
[151] L. Xia, X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, C.L. Zeng, F.R. Zhang, J.Z. Chen, Br. J. Pharmacol. 155 (2008) 387–394.
[152] X.-B. Wang, L. Zhu, J. Huang, Y.-G. Yin, X.-Q. Kong, Q.-F. Rong, A.-W. Shi, K.-J. Cao, Chin. Med. J. 124 (2011) 4310–4315.
[153] M.L. Balestrieri, C. Schiano, F. Felice, A. Casamassimi, A. Balestrieri, L. Milone, L. Servillo, C. Napoli, J. Biochem. 143 (2008) 179–186.
[154] L. Ling, S. Gu, Y. Cheng, Mol. Med. Rep. 15 (2017) 1188–1194.
[155] X.-H. Chen, Z.-G. Shi, H.-B. Lin, F. Wu, F. Zheng, C.-F. Wu, M.-W. Huang, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 6352–6359.
[156] H. Zhang, Z. Zhai, Y. Wang, J. Zhang, H. Wu, Y. Wang, C. Li, D. Li, L. Lu, X. Wang, J. Chang, Q. Hou, Z. Ju, D. Zhou, A. Meng, Free Radic. Biol. Med. 54 (2013) 40–50.
[157] Y.-J. Lv, Y. Yang, B.-D. Sui, C.-H. Hu, P. Zhao, L. Liao, J. Chen, L.-Q. Zhang, T.-T. Yang, S.-F. Zhang, Y. Jin, Theranostics 8 (2018) 2387–2406.
[158] H. Liu, S. Zhang, L. Zhao, Y. Zhang, Q. Li, X. Chai, Y. Zhang, Stem Cells Int. 2016 (2016) 2524092.
[159] I.I. Suvorova, A.R. Knyazeva, A.V. Petukhov, N.D. Aksenov, V.A. Pospelov, Cell Death Discov 5 (2019) 61.
[160] Y.-J. Wang, P. Zhao, B.-D. Sui, N. Liu, C.-H. Hu, J. Chen, C.-X. Zheng, A.-Q. Liu, K. Xuan, Y.-P. Pan, Y. Jin, Exp. Mol. Med. 50 (2018) 1–15.
[161] T.-S. Chen, C.-H. Kuo, C.H. Day, L.-F. Pan, R.-J. Chen, B.-C. Chen, V.V. Padma, Y.-M. Lin, C.-Y. Huang, J. Cell. Physiol. 234 (2019) 20443–20452.
[162] Z. Safaeinejad, M. Nabiuni, M. Peymani, K. Ghaedi, M.H. Nasr-Esfahani, H. Baharvand, Eur. J. Cell Biol. 96 (2017) 665–672.
[163] F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, S.-I. Tanuma, Curr. Aging Sci. 4 (2011) 1–7.
[164] J. Li, C.-X. Zhang, Y.-M. Liu, K.-L. Chen, G. Chen, Oncotarget 8 (2017) 65717–65729.
[165] K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer, D.A. Sinclair, Nature 425 (2003) 191–196.
[166] S.-C. Hsu, S.-M. Huang, A. Chen, C.-Y. Sun, S.-H. Lin, J.-S. Chen, S.-T. Liu, Y.-J. Hsu, Int. J. Biochem. Cell Biol. 53 (2014) 361–371.
[167] T.M. Bass, D. Weinkove, K. Houthoofd, D. Gems, L. Partridge, Mech. Ageing Dev. 128 (2007) 546–552.
[168] J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, D. Sinclair, Nature 430 (2004) 686–689.
[169] J. Miranda, M.P. Portillo, J.A. Madrid, N. Arias, M.T. Macarulla, M. Garaulet, Br. J. Nutr. 110 (2013) 1421–1428.
[170] F. Pifferi, A. Dal-Pan, S. Languille, F. Aujard, Oxid. Med. Cell. Longev. 2013 (2013) 187301.
[171] J.R. Leheste, G. Torres, Front. Mol. Neurosci. 8 (2015) 61.
[172] L. Sun, Y. Wang, Y. Song, X.-R. Cheng, S. Xia, M.R.T. Rahman, Y. Shi, G. Le, Biochem. Biophys. Res. Commun. 458 (2015) 86–91.
[173] J.-A. Lee, S.K. Ha, E. Cho, I. Choi, Nutrients 7 (2015) 9650–9661.
[174] J.J. Johnson, M. Nihal, I.A. Siddiqui, C.O. Scarlett, H.H. Bailey, H. Mukhtar, N. Ahmad, Mol. Nutr. Food Res. 55 (2011) 1169–1176.
[175] K.R. Polley, N. Jenkins, P. O’Connor, K. McCully, Appl. Physiol. Nutr. Metab. 41 (2016) 26–32.
[176] W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu, J. Pan, Metab. Brain Dis. 28 (2013) 585–595.
[177] Y. Xu, C. Zhang, F. Wu, X. Xu, G. Wang, M. Lin, Y. Yu, Y. An, J. Pan, Metab. Brain Dis. 31 (2016) 837–848.
[178] E.L. Wightman, J.L. Reay, C.F. Haskell, G. Williamson, T.P. Dew, D.O. Kennedy, Br. J. Nutr. 112 (2014) 203–213.
[179] Y. Zhu, B. Feng, S. He, Z. Su, G. Zheng, Phytomedicine 40 (2018) 20–26.
[180] A. Malvasi, I. Kosmas, O.A. Mynbaev, R. Sparic, S. Gustapane, M. Guido, A. Tinelli, Clin. Ter. 168 (2017) e240–e247.