Quercefit® Quercetin Phytosome

COMMON NAME

Quercetin Phytosome


TOP BENEFITS OF QUERCEFIT® QUERCETIN PHYTOSOME

Supports healthy aging*

Supports antioxidant defenses*

Supports cellular health*


WHAT IS QUERCEFIT® QUERCETIN PHYTOSOME?

Quercefit® is Indena’s unique Phytosome® formulation of quercetin. Some ingredients—quercetin is one of them—are very poorly absorbed. Indena’s Phytosome® technology creates a quercetin phytosome complex using sunflower lecithin, resulting in dramatically enhanced bioavailability* [1]. The result, as Indena likes to say, is “Quercetin, made better.” But what is quercetin? Quercetin is a yellow plant pigment. Its name is derived from the Latin work for oak forest—quercetum—because it was originally identified in oaks. Quercetin is a flavonol, which is one of the polyphenol categories. Polyphenols play important roles in the plant kingdom. One of these roles is protecting plants from environmental stress such as pests and UV irradiation from the sun. Because of this role, they tend to concentrate in parts of the plant that come into more contact with the outside world. Red onions are one of the better food sources of quercetin. But the quercetin isn’t uniformly spread through red onions; it concentrates in the outer skins (which are usually thrown away when onions are peeled before use) and the part closest to the root. Capers may be the best dietary source of quercetin. 

 

NEUROHACKER’S QUERCEFIT® QUERCETIN PHYTOSOME SOURCING

Quercefit® is a sunflower lecithin formulation of quercetin (Quercetin Phytosome®) containing 34-42% quercetin obtained from flower buds of Sophora japonica L. 

Quercefit® has shown up to 20-fold more bioavailability than unformulated quercetin [1].

Quercefit® is a registered trademark of Indena S.p.A.

Quercefit® is non-GMO, gluten-free, and vegan. 


QUERCEFIT® QUERCETIN PHYTOSOME DOSING PRINCIPLES AND RATIONALE

We chose the recommended dose of Quercefit® taking into account several different factors. The primary factor was how quercetin in general, and Quercefit® specifically, are being dosed as a senolytic in clinical research. An example of this dosing is a planned clinical trial (ClinicalTrials.gov identifier NCT04313634) which is using a similar intermittent dosing protocol to what’s recommended for Qualia Senolytic. The trial is dosing Quercefit® at 1000 mg daily for several days. Our recommended dose selection also took into account that Qualia Senolytic contains several other ingredients which share some cellular function mechanisms with quercetin.* We opted for a slightly lower recommended daily dose of Quercefit® (750 mg per dose) to account for the contributions being made by these other ingredients.


QUERCETIN KEY MECHANISMS

Brain function*

Supports learning and memory [3–10]

Supports motor activity [6,8,11]

Supports non-rapid eye movement (non-REM) sleep [12]

Supports brain-derived neurotrophic factor (BDNF) [5,10,13–17]

Supports tryptophan hydroxylase (TPH) activity [8]

Supports serotonin synthesis/levels [8]

Downregulates MAO-A activity [8,18,19]

Downregulates acetylcholinesterase (AChE) activity [9,20,21]

Supports tyrosine hydroxylase (TH) activity [8]

Supports dopamine synthesis [8]

Supports noradrenaline synthesis [8]

Supports hippocampal SIRT1 levels [8]

Supports brain insulin signaling [22]

Supports long-term potentiation [23]

Supports neural stem/progenitor cell proliferation [10]

Supports neurogenesis [10]

Supports ectonucleotidase activity [21,24–26]

Downregulates adenosine deaminase (ADA) activity [21,25]

Supports neuroprotective functions [11,20,21,23,27–31]

Supports free radical scavenging [5,6,9,20,21,28,32]

Supports brain antioxidant defenses [5–7,9,20,28]

Supports Nrf2 signaling [7,29]

Supports phase II detox enzymes [7,29]

Supports brain mitochondrial function [4,29]

Supports neural AMPK signaling [4,27,29]


Stress*

Supports healthy behavioral and physiological responses to stress [6,9,13,17,22,31–36]


Gut microbiota*

Supports the composition of the gut microbiota [15,37–42]

Supports gut microbial metabolism [38]

Supports gut-immune communication [37,39]


Healthy aging and longevity*

Supports stem cell proliferation [10,43–45]

Supports stem cell differentiation [44–46]

Supports the management of senescent cells [43,47,48]

Supports cellular functions involved with pruning stressed cells [49–56]

Supports autophagy [57–63]

Supports mitophagy [48,64–66]


Cellular signaling* 

Influences PI3K/AKT signaling [54,67,68]

Influences mTOR signaling [57,61]

Influences AMPK signaling [69,70]

Influences SIRT1 signaling [48,60,64,70]

Influences NF-κB signaling [51]

Influences HIF-1α signaling [57,67–69,71]


Immune system*

Supports adaptive immunity [72]

Supports immune system communication [73]


Musculoskeletal health*

Supports joint health [73]

Supports muscle recovery and contraction [74,75]


Complementary ingredients*

With palmitoylethanolamide for joint health [76]

With glucosamine and chondroitin for joint health [77]

With Mangifera indica leaf extract for ergogenic support [78]


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES

[1]A. Riva, M. Ronchi, G. Petrangolini, S. Bosisio, P. Allegrini, Improved Oral Absorption of Quercetin from Quercetin Phytosome®, a New Delivery System Based on Food Grade Lecithin, Eur. J. Drug Metab. Pharmacokinet. 44 (2019) 169–177. https://doi.org/10.1007/s13318-018-0517-3.
[2]L. Geng, Z. Liu, S. Wang, S. Sun, S. Ma, X. Liu, P. Chan, L. Sun, M. Song, W. Zhang, G.-H. Liu, J. Qu, Low-dose quercetin positively regulates mouse healthspan, Protein Cell. 10 (2019) 770–775. https://doi.org/10.1007/s13238-019-0646-8.
[3]A. Priprem, J. Watanatorn, S. Sutthiparinyanont, W. Phachonpai, S. Muchimapura, Anxiety and cognitive effects of quercetin liposomes in rats, Nanomedicine. 4 (2008) 70–78. https://doi.org/10.1016/j.nano.2007.12.001.
[4]D.-M. Wang, S.-Q. Li, W.-L. Wu, X.-Y. Zhu, Y. Wang, H.-Y. Yuan, Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease, Neurochem. Res. 39 (2014) 1533–1543. https://doi.org/10.1007/s11064-014-1343-x.
[5]S.-F. Xia, Z.-X. Xie, Y. Qiao, L.-R. Li, X.-R. Cheng, X. Tang, Y.-H. Shi, G.-W. Le, Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress, Physiol. Behav. 138 (2015) 325–331. https://doi.org/10.1016/j.physbeh.2014.09.008.
[6]V. Mehta, A. Parashar, M. Udayabanu, Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress, Physiol. Behav. 171 (2017) 69–78. https://doi.org/10.1016/j.physbeh.2017.01.006.
[7]F. Dong, S. Wang, Y. Wang, X. Yang, J. Jiang, D. Wu, X. Qu, H. Fan, R. Yao, Quercetin ameliorates learning and memory via the Nrf2-ARE signaling pathway in d-galactose-induced neurotoxicity in mice, Biochem. Biophys. Res. Commun. 491 (2017) 636–641. https://doi.org/10.1016/j.bbrc.2017.07.151.
[8]F. Sarubbo, M.R. Ramis, C. Kienzer, S. Aparicio, S. Esteban, A. Miralles, D. Moranta, Chronic Silymarin, Quercetin and Naringenin Treatments Increase Monoamines Synthesis and Hippocampal Sirt1 Levels Improving Cognition in Aged Rats, J. Neuroimmune Pharmacol. 13 (2018) 24–38. https://doi.org/10.1007/s11481-017-9759-0.
[9]N. Samad, A. Saleem, F. Yasmin, M.A. Shehzad, Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice, Physiol. Res. 67 (2018) 795–808. https://doi.org/10.33549/physiolres.933776.
[10]M. Karimipour, R. Rahbarghazi, H. Tayefi, M. Shimia, M. Ghanadian, J. Mahmoudi, H.S. Bagheri, Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus, Int. J. Dev. Neurosci. 74 (2019) 18–26. https://doi.org/10.1016/j.ijdevneu.2019.02.005.
[11]J. Chakraborty, R. Singh, D. Dutta, A. Naskar, U. Rajamma, K.P. Mohanakumar, Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s Disease, CNS Neurosci. Ther. 20 (2014) 10–19. https://doi.org/10.1111/cns.12189.
[12]D. Kambe, M. Kotani, M. Yoshimoto, S. Kaku, S. Chaki, K. Honda, Effects of quercetin on the sleep-wake cycle in rats: involvement of gamma-aminobutyric acid receptor type A in regulation of rapid eye movement sleep, Brain Res. 1330 (2010) 83–88. https://doi.org/10.1016/j.brainres.2010.03.033.
[13]Y. Hou, M.A. Aboukhatwa, D.-L. Lei, K. Manaye, I. Khan, Y. Luo, Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice, Neuropharmacology. 58 (2010) 911–920. https://doi.org/10.1016/j.neuropharm.2009.11.002.
[14]M. Rahvar, A.A. Owji, F.J. Mashayekhi, Effect of quercetin on the brain-derived neurotrophic factor gene expression in the rat brain, Bratisl. Lek. Listy. 119 (2018) 28–31. https://doi.org/10.4149/BLL_2018_006.
[15]M. Lv, S. Yang, L. Cai, L.-Q. Qin, B.-Y. Li, Z. Wan, Effects of Quercetin Intervention on Cognition Function in APP/PS1 Mice was Affected by Vitamin D Status, Mol. Nutr. Food Res. 62 (2018) e1800621. https://doi.org/10.1002/mnfr.201800621.
[16]K. Selvakumar, S. Bavithra, G. Krishnamoorthy, J. Arunakaran, Impact of quercetin on tight junctional proteins and BDNF signaling molecules in hippocampus of PCBs-exposed rats, Interdiscip. Toxicol. 11 (2018) 294–305. https://doi.org/10.2478/intox-2018-0029.
[17]F. Ke, H.-R. Li, X.-X. Chen, X.-R. Gao, L.-L. Huang, A.-Q. Du, C. Jiang, H. Li, J.-F. Ge, Quercetin Alleviates LPS-Induced Depression-Like Behavior in Rats via Regulating BDNF-Related Imbalance of Copine 6 and TREM1/2 in the Hippocampus and PFC, Front. Pharmacol. 10 (2019) 1544. https://doi.org/10.3389/fphar.2019.01544.
[18]S. Yoshino, A. Hara, H. Sakakibara, K. Kawabata, A. Tokumura, A. Ishisaka, Y. Kawai, J. Terao, Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria, Nutrition. 27 (2011) 847–852. https://doi.org/10.1016/j.nut.2010.09.002.
[19]L. Saaby, H.B. Rasmussen, A.K. Jäger, MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull, J. Ethnopharmacol. 121 (2009) 178–181. https://doi.org/10.1016/j.jep.2008.10.012.
[20]L.A. Pattanashetti, A.D. Taranalli, V. Parvatrao, R.H. Malabade, D. Kumar, Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats, Indian J. Pharmacol. 49 (2017) 60–64. https://doi.org/10.4103/0253-7613.201016.
[21]R.M. Maciel, F.B. Carvalho, A.A. Olabiyi, R. Schmatz, J.M. Gutierres, N. Stefanello, D. Zanini, M.M. Rosa, C.M. Andrade, M.A. Rubin, M.R. Schetinger, V.M. Morsch, C.C. Danesi, S.T.A. Lopes, Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities, Biomed. Pharmacother. 84 (2016) 559–568. https://doi.org/10.1016/j.biopha.2016.09.069.
[22]V. Mehta, A. Parashar, A. Sharma, T.R. Singh, M. Udayabanu, Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression, Horm. Behav. 89 (2017) 13–22. https://doi.org/10.1016/j.yhbeh.2016.12.012.
[23]Y. Yao, D.D. Han, T. Zhang, Z. Yang, Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons, Phytother. Res. 24 (2010) 136–140. https://doi.org/10.1002/ptr.2902.
[24]E. Braganhol, A.S.K. Tamajusuku, A. Bernardi, M.R. Wink, A.M.O. Battastini, Ecto-5’-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line, Biochim. Biophys. Acta. 1770 (2007) 1352–1359. https://doi.org/10.1016/j.bbagen.2007.06.003.
[25]F.H. Abdalla, A.M. Cardoso, L.B. Pereira, R. Schmatz, J.F. Gonçalves, N. Stefanello, A.M. Fiorenza, J.M. Gutierres, J.D. da S. Serres, D. Zanini, V.C. Pimentel, J.M. Vieira, M.R.C. Schetinger, V.M. Morsch, C.M. Mazzanti, Neuroprotective effect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats, Mol. Cell. Biochem. 381 (2013) 1–8. https://doi.org/10.1007/s11010-013-1659-x.
[26]J. Baldissarelli, A. Santi, R. Schmatz, F.H. Abdalla, A.M. Cardoso, C.C. Martins, G.R.M. Dias, N.S. Calgaroto, L.P. Pelinson, K.P. Reichert, V.L. Loro, V.M.M. Morsch, M.R.C. Schetinger, Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin, Cell. Mol. Neurobiol. 37 (2017) 53–63. https://doi.org/10.1007/s10571-016-0342-7.
[27]J. Lu, D.-M. Wu, Y.-L. Zheng, B. Hu, Z.-F. Zhang, Q. Shan, Z.-H. Zheng, C.-M. Liu, Y.-J. Wang, Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity, J. Pathol. 222 (2010) 199–212. https://doi.org/10.1002/path.2754.
[28]F.H. Abdalla, R. Schmatz, A.M. Cardoso, F.B. Carvalho, J. Baldissarelli, J.S. de Oliveira, M.M. Rosa, M.A. Gonçalves Nunes, M.A. Rubin, I.B.M. da Cruz, F. Barbisan, V.L. Dressler, L.B. Pereira, M.R.C. Schetinger, V.M. Morsch, J.F. Gonçalves, C.M. Mazzanti, Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: Possible involvement of the acetylcholinesterase and Na(+),K(+)-ATPase activities, Physiol. Behav. 135 (2014) 152–167. https://doi.org/10.1016/j.physbeh.2014.06.008.
[29]D. Wang, J. Zhao, S. Li, G. Shen, S. Hu, Quercetin attenuates domoic acid-induced cognitive deficits in mice, Nutr. Neurosci. 21 (2018) 123–131. https://doi.org/10.1080/1028415X.2016.1231438.
[30]P.-C. Paula, S.-G. Angelica Maria, C.-H. Luis, C.-G. Gloria Patricia, Preventive Effect of Quercetin in a Triple Transgenic Alzheimer’s Disease Mice Model, Molecules. 24 (2019). https://doi.org/10.3390/molecules24122287.
[31]M. Kosari-Nasab, G. Shokouhi, A. Ghorbanihaghjo, M. Mesgari-Abbasi, A.-A. Salari, Quercetin mitigates anxiety-like behavior and normalizes hypothalamus-pituitary-adrenal axis function in a mouse model of mild traumatic brain injury, Behav. Pharmacol. 30 (2019) 282–289. https://doi.org/10.1097/FBP.0000000000000480.
[32]S. Merzoug, M.L. Toumi, A. Tahraoui, Quercetin mitigates Adriamycin-induced anxiety- and depression-like behaviors, immune dysfunction, and brain oxidative stress in rats, Naunyn. Schmiedebergs. Arch. Pharmacol. 387 (2014) 921–933. https://doi.org/10.1007/s00210-014-1008-y.
[33]J.M. Davis, E.A. Murphy, J.L. McClellan, M.D. Carmichael, J.D. Gangemi, Quercetin reduces susceptibility to influenza infection following stressful exercise, Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 (2008) R505–9. https://doi.org/10.1152/ajpregu.90319.2008.
[34]K. Kawabata, Y. Kawai, J. Terao, Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats, J. Nutr. Biochem. 21 (2010) 374–380. https://doi.org/10.1016/j.jnutbio.2009.01.008.
[35]V. Kumar, Adaptogenic Potential of Triethylene Glycol and Quercetin in Stressed Mice, PPIJ. 2 (2015). https://doi.org/10.15406/ppij.2015.02.00041.
[36]P. Anggreini, C. Ardianto, M. Rahmadi, J. Khotib, Quercetin attenuates acute predator stress exposure-evoked innate fear and behavioral perturbation, J. Basic Clin. Physiol. Pharmacol. 30 (2019). https://doi.org/10.1515/jbcpp-2019-0242.
[37]R. Lin, M. Piao, Y. Song, Dietary Quercetin Increases Colonic Microbial Diversity and Attenuates Colitis Severity in Citrobacter rodentium-Infected Mice, Front. Microbiol. 10 (2019) 1092. https://doi.org/10.3389/fmicb.2019.01092.
[38]D.-N. Wu, L. Guan, Y.-X. Jiang, S.-H. Ma, Y.-N. Sun, H.-T. Lei, W.-F. Yang, Q.-F. Wang, Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis, Cardiovasc Diagn Ther. 9 (2019) 545–560. https://doi.org/10.21037/cdt.2019.12.04.
[39]D. Porras, E. Nistal, S. Martínez-Flórez, S. Pisonero-Vaquero, J.L. Olcoz, R. Jover, J. González-Gallego, M.V. García-Mediavilla, S. Sánchez-Campos, Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation, Free Radic. Biol. Med. 102 (2017) 188–202. https://doi.org/10.1016/j.freeradbiomed.2016.11.037.
[40]J. Nie, L. Zhang, G. Zhao, X. Du, Quercetin reduces atherosclerotic lesions by altering the gut microbiota and reducing atherogenic lipid metabolites, J. Appl. Microbiol. 127 (2019) 1824–1834. https://doi.org/10.1111/jam.14441.
[41]U. Etxeberria, N. Arias, N. Boqué, M.T. Macarulla, M.P. Portillo, J.A. Martínez, F.I. Milagro, Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats, J. Nutr. Biochem. 26 (2015) 651–660. https://doi.org/10.1016/j.jnutbio.2015.01.002.
[42]J. Firrman, L. Liu, L. Zhang, G. Arango Argoty, M. Wang, P. Tomasula, M. Kobori, S. Pontious, W. Xiao, The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii, Anaerobe. 42 (2016) 130–141. https://doi.org/10.1016/j.anaerobe.2016.10.004.
[43]L. Geng, Z. Liu, W. Zhang, W. Li, Z. Wu, W. Wang, R. Ren, Y. Su, P. Wang, L. Sun, Z. Ju, P. Chan, M. Song, J. Qu, G.-H. Liu, Chemical screen identifies a geroprotective role of quercetin in premature aging, Protein Cell. 10 (2019) 417–435. https://doi.org/10.1007/s13238-018-0567-y.
[44]Z. Yuan, J. Min, Y. Zhao, Q. Cheng, K. Wang, S. Lin, J. Luo, H. Liu, Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats, Am. J. Transl. Res. 10 (2018) 4313–4321. https://www.ncbi.nlm.nih.gov/pubmed/30662673.
[45]X.-G. Pang, Y. Cong, N.-R. Bao, Y.-G. Li, J.-N. Zhao, Quercetin Stimulates Bone Marrow Mesenchymal Stem Cell Differentiation through an Estrogen Receptor-Mediated Pathway, Biomed Res. Int. 2018 (2018) 4178021. https://doi.org/10.1155/2018/4178021.
[46]A. Casado-Díaz, J. Anter, G. Dorado, J.M. Quesada-Gómez, Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts, J. Nutr. Biochem. 32 (2016) 151–162. https://doi.org/10.1016/j.jnutbio.2016.03.005.
[47]S.R. Kim, K. Jiang, M. Ogrodnik, X. Chen, X.-Y. Zhu, H. Lohmeier, L. Ahmed, H. Tang, T. Tchkonia, L.J. Hickson, J.L. Kirkland, L.O. Lerman, Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin, Transl. Res. 213 (2019) 112–123. https://doi.org/10.1016/j.trsl.2019.07.005.
[48]T. Liu, Q. Yang, X. Zhang, R. Qin, W. Shan, H. Zhang, X. Chen, Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis, Life Sci. 257 (2020) 118116. https://doi.org/10.1016/j.lfs.2020.118116.
[49]X. Zhang, Q. Xu, I. Saiki, Quercetin inhibits the invasion and mobility of murine melanoma B16-BL6 cells through inducing apoptosis via decreasing Bcl-2 expression, Clin. Exp. Metastasis. 18 (2000) 415–421. https://doi.org/10.1023/a:1010960615370.
[50]M.R. Vijayababu, A. Arunkumar, P. Kanagaraj, J. Arunakaran, Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells, J. Carcinog. 5 (2006) 10. https://doi.org/10.1186/1477-3163-5-10.
[51]R. Vidya Priyadarsini, R. Senthil Murugan, S. Maitreyi, K. Ramalingam, D. Karunagaran, S. Nagini, The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition, Eur. J. Pharmacol. 649 (2010) 84–91. https://doi.org/10.1016/j.ejphar.2010.09.020.
[52]A. Primikyri, M.V. Chatziathanasiadou, E. Karali, E. Kostaras, M.D. Mantzaris, E. Hatzimichael, J.-S. Shin, S.-W. Chi, E. Briasoulis, E. Kolettas, I.P. Gerothanassis, A.G. Tzakos, Direct binding of Bcl-2 family proteins by quercetin triggers its pro-apoptotic activity, ACS Chem. Biol. 9 (2014) 2737–2741. https://doi.org/10.1021/cb500259e.
[53]D. Teekaraman, S.P. Elayapillai, M.P. Viswanathan, A. Jagadeesan, Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line, Chem. Biol. Interact. 300 (2019) 91–100. https://doi.org/10.1016/j.cbi.2019.01.008.
[54]A.B. Granado-Serrano, M.A. Martín, L. Bravo, L. Goya, S. Ramos, Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2), J. Nutr. 136 (2006) 2715–2721. https://doi.org/10.1093/jn/136.11.2715.
[55]D.-H. Lee, M. Szczepanski, Y.J. Lee, Role of Bax in quercetin-induced apoptosis in human prostate cancer cells, Biochem. Pharmacol. 75 (2008) 2345–2355. https://doi.org/10.1016/j.bcp.2008.03.013.
[56]R. Aalinkeel, B. Bindukumar, J.L. Reynolds, D.E. Sykes, S.D. Mahajan, K.C. Chadha, S.A. Schwartz, The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90, Prostate. 68 (2008) 1773–1789. https://doi.org/10.1002/pros.20845.
[57]K. Wang, R. Liu, J. Li, J. Mao, Y. Lei, J. Wu, J. Zeng, T. Zhang, H. Wu, L. Chen, C. Huang, Y. Wei, Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling, Autophagy. 7 (2011) 966–978. https://doi.org/10.4161/auto.7.9.15863.
[58]S. Daw, S. Law, Quercetin induces autophagy in myelodysplastic bone marrow including hematopoietic stem/progenitor compartment, Environ. Toxicol. 36 (2021) 149–167. https://doi.org/10.1002/tox.23020.
[59]X. Lin, T. Han, Y. Fan, S. Wu, F. Wang, C. Wang, Quercetin improves vascular endothelial function through promotion of autophagy in hypertensive rats, Life Sci. 258 (2020) 118106. https://doi.org/10.1016/j.lfs.2020.118106.
[60]D. Wang, X. He, D. Wang, P. Peng, X. Xu, B. Gao, C. Zheng, H. Wang, H. Jia, Q. Shang, Z. Sun, Z. Luo, L. Yang, Quercetin Suppresses Apoptosis and Attenuates Intervertebral Disc Degeneration via the SIRT1-Autophagy Pathway, Front Cell Dev Biol. 8 (2020) 613006. https://doi.org/10.3389/fcell.2020.613006.
[61]S. Zhang, W. Liang, Y. Abulizi, T. Xu, R. Cao, C. Xun, J. Zhang, W. Sheng, Quercetin Alleviates Intervertebral Disc Degeneration by Modulating p38 MAPK-Mediated Autophagy, Biomed Res. Int. 2021 (2021) 6631562. https://doi.org/10.1155/2021/6631562.
[62]D.L. Li, L. Mao, Q. Gu, F. Wei, Y.-Y. Gong, Quercetin protects retina external barrier from oxidative stress injury by promoting autophagy, Cutan. Ocul. Toxicol. 40 (2021) 7–13. https://doi.org/10.1080/15569527.2020.1860082.
[63]Y. Wang, W. Zhang, Q. Lv, J. Zhang, D. Zhu, The critical role of quercetin in autophagy and apoptosis in HeLa cells, Tumour Biol. 37 (2016) 925–929. https://doi.org/10.1007/s13277-015-3890-4.
[64]X. Chang, T. Zhang, Q. Meng, ShiyuanWang, P. Yan, X. Wang, D. Luo, X. Zhou, R. Ji, Quercetin Improves Cardiomyocyte Vulnerability to Hypoxia by Regulating SIRT1/TMBIM6-Related Mitophagy and Endoplasmic Reticulum Stress, Oxid. Med. Cell. Longev. 2021 (2021) 5529913. https://doi.org/10.1155/2021/5529913.
[65]X. Han, T. Xu, Q. Fang, H. Zhang, L. Yue, G. Hu, L. Sun, Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy, Redox Biol. 44 (2021) 102010. https://doi.org/10.1016/j.redox.2021.102010.
[66]X. Yu, Y. Xu, S. Zhang, J. Sun, P. Liu, L. Xiao, Y. Tang, L. Liu, P. Yao, Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy, Nutrients. 8 (2016). https://doi.org/10.3390/nu8010027.
[67]L.-B. Si, M.-Z. Zhang, Q. Han, J.-N. Huang, X. Long, F. Long, R.C.-H. Zhao, J.-Z. Huang, Z.-F. Liu, R. Zhao, H.-L. Zhang, X.-J. Wang, Sensitization of keloid fibroblasts by quercetin through the PI3K/Akt pathway is dependent on regulation of HIF-1α, Am. J. Transl. Res. 10 (2018) 4223–4234. https://www.ncbi.nlm.nih.gov/pubmed/30662665.
[68]N.M. Al-Rasheed, L.M. Fadda, H.A. Attia, H.M. Ali, N.M. Al-Rasheed, Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Bax, HIF1-α, TGF-β, Smad-2, and AKT pathways, J. Biochem. Mol. Toxicol. 31 (2017). https://doi.org/10.1002/jbt.21883.
[69]H.-S. Kim, T. Wannatung, S. Lee, W.K. Yang, S.H. Chung, J.-S. Lim, W. Choe, I. Kang, S.-S. Kim, J. Ha, Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer, Apoptosis. 17 (2012) 938–949. https://doi.org/10.1007/s10495-012-0719-0.
[70]H. Guo, H. Ding, X. Tang, M. Liang, S. Li, J. Zhang, J. Cao, Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro, Thorac Cancer. 12 (2021) 1415–1422. https://doi.org/10.1111/1759-7714.13925.
[71]D.-H. Lee, Y.J. Lee, Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis, J. Cell. Biochem. 105 (2008) 546–553. https://doi.org/10.1002/jcb.21851.
[72]J. Mlcek, T. Jurikova, S. Skrovankova, J. Sochor, Quercetin and Its Anti-Allergic Immune Response, Molecules. 21 (2016). https://doi.org/10.3390/molecules21050623.
[73]F. Javadi, A. Ahmadzadeh, S. Eghtesadi, N. Aryaeian, M. Zabihiyeganeh, A.R. Foroushani, S. Jazayeri, The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial, Journal of the American College of Nutrition. 36 (2017) 9–15. https://doi.org/10.1080/07315724.2016.1140093.
[74]I. Bazzucchi, F. Patrizio, R. Ceci, G. Duranti, P. Sgrò, S. Sabatini, L. Di Luigi, M. Sacchetti, F. Felici, The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage, Nutrients. 11 (2019). https://doi.org/10.3390/nu11010205.
[75]A. Riva, J.A. Vitale, G. Belcaro, S. Hu, B. Feragalli, G. Vinciguerra, M. Cacchio, E. Bonanni, L. Giacomelli, R. Eggenhöffner, S. Togni, Quercetin phytosome® in triathlon athletes: a pilot registry study, Minerva Med. 109 (2018) 285–289. https://doi.org/10.23736/S0026-4806.18.05681-1.
[76]D. Britti, R. Crupi, D. Impellizzeri, E. Gugliandolo, R. Fusco, C. Schievano, V.M. Morittu, M. Evangelista, R. Di Paola, S. Cuzzocrea, A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models, BMC Veterinary Research. 13 (2017). https://doi.org/10.1186/s12917-017-1151-z.
[77]N. Kanzaki, K. Saito, A. Maeda, Y. Kitagawa, Y. Kiso, K. Watanabe, A. Tomonaga, I. Nagaoka, H. Yamaguchi, Effect of a dietary supplement containing glucosamine hydrochloride, chondroitin sulfate and quercetin glycosides on symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled study, Journal of the Science of Food and Agriculture. 92 (2012) 862–869. https://doi.org/10.1002/jsfa.4660.
[78]M. Gelabert-Rebato, J.C. Wiebe, M. Martin-Rincon, N. Gericke, M. Perez-Valera, D. Curtelin, V. Galvan-Alvarez, L. Lopez-Rios, D. Morales-Alamo, J.A.L. Calbet, Mangifera indica L. Leaf Extract in Combination With Luteolin or Quercetin Enhances VO2peak and Peak Power Output, and Preserves Skeletal Muscle Function During Ischemia-Reperfusion in Humans, Front. Physiol. 9 (2018) 740. https://doi.org/10.3389/fphys.2018.00740.