Schisandra chinensis Fruit Extract

SCHISANDRA CHINENSIS COMMON NAME

Schisandra | Schizandra | Magnolia Berry | Five-Flavor-Fruit | Limonnik (Russian)

TOP BENEFITS OF SCHISANDRA CHINENSIS

Supports cognitive function*
Supports mood*
Supports resistance to stress*
Supports endurance capacity*
Supports sleep*

WHAT IS SCHISANDRA CHINENSIS?

The fruits of Schisandra chinensis are berries. They are one of the 50 fundamental herbs in Traditional Chinese Medicine, and have been used in traditional medicine in Japan, Korea, and Far East regions of the Russian empire. One of its common names—Five-Flavor-Fruit—is because the berries are known for possessing all five basic flavors: salty, sweet, sour, pungent (spicy), and bitter. S. chinensis fruits are considered to be an adaptogen, supporting broad resistance to stress, mental and physical performance, mood, sleep, vision, and immunity. Several of its traditional uses, including use as a tonic to counter exhaustion and support night vision, led to Russian scientists extensively studying the berries and seeds in both animals and humans from 1940-1960. As a result of this research S. chinensis gained recognition as an adaptogen in the early 1960’s in the former USSR, and has continued to be extensively studied in articles published in Russian, and more recently in English language journals. The primary active compounds in S. chinensis berries are schisandra lignans—lignans are a subgroup of non-flavonoid polyphenols that interact with gut microbiota (i.e., gut-brain axis) [1].

NEUROHACKER’S SCHISANDRA CHINENSIS SOURCING

Schisandra chinensis fruit extract is standardized to contain not less than 9% schisandrins.

Schisandra chinensis fruit extract is Non-GMO and Vegan.

SCHISANDRA CHINENSIS DOSING PRINCIPLES AND RATIONALE

The original Russian research resulted in Schisandra chinensis being categorized as an herbal adaptogen. Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response (see Neurohacker Dosing Principles). It’s important to be in this zone; it’s just as important not to be above it. The Russian research also found that the amount of the schisandra lignans given were critical when determining the dose, with very low doses of these compounds being nootropic and ergogenic. So, when an extract is standardized for higher amounts of schisandrins, lower amounts of it should be taken. Our dosing of S. chinensis is determined based on the standardization in order to provide an amount of schisandra lignans in the target range for a healthy adaptive response.

SCHISANDRA CHINENSIS KEY MECHANISMS

Adaptogen

Supports endurance and working capacity [1]

Supports resistance to stress [1–8]

Supports sleep [1]

Supports a calm mood [1,9]

Supports healthy behavioral responses to stress [3,4,7]

Brain function

Supports mental performance [1]

Supports vision [1]

Supports learning and memory [7,10–13]

Supports GABAergic neurotransmission [3,14,15]

Supports GABA-Glutamate levels [10,11,15,16]

Supports acetylcholine signaling [10,11,13]

Supports serotonin signaling [9–11,16]

Supports adrenergic signaling [9–11,16]

Supports dopamine signaling [9–11,16]

Supports sleep mechanisms [14,15,17,18] 

Downregulates acetylcholinesterase (AChE) activity [10,13]

Supports brain-derived neurotrophic factor (BDNF) [4,7]

Modulates glycogen synthase kinase 3β (GSK3β) activity [7,10] 

Supports neuroprotective functions [10–13,19,20]

Supports brain mitochondrial function [21]

Supports antioxidant defenses [10,19,21,22]

Supports phase II detoxifying/antioxidant enzymes [22]

Gut microbiota

Supports the composition of the gut microbiota [23,24]

Supports gut microbial metabolism [24]

Supports gut immune responses [24]

Immune System

Supports innate immunity [25–27]

Supports immune function during some forms of stress [2,28–30]

Supports immunomodulation (i.e., balance of immune function) [31–33]

Healthy aging and longevity

Supports mitochondrial function [19,21,34]

Supports antioxidant defenses [21,34]

Supports HSP70 chaperone [34]

Supports autophagy [35]

Supports healthy muscle and bone with aging [36,37]

Synergies

With sesamin (from sesame seeds)—another lignan—to support liver health [38] and blood fluidity [39]

With other adaptogens (e.g., Rhodiola, Siberian Ginseng) as a nootropic and immune support [40,41]


REFERENCES 

[1]A. Panossian, G. Wikman, J. Ethnopharmacol. 118 (2008) 183–212.

[2]J. Li, J. Wang, J.-Q. Shao, H. Du, Y.-T. Wang, L. Peng, Chin. J. Integr. Med. 21 (2015) 43–48.

[3]T. Yan, M. Xu, B. Wu, Z. Liao, Z. Liu, X. Zhao, K. Bi, Y. Jia, Food Funct. 7 (2016) 2811–2819.

[4]T. Yan, M. Xu, S. Wan, M. Wang, B. Wu, F. Xiao, K. Bi, Y. Jia, Psychiatry Res. 243 (2016) 135–142.

[5]Sun L.-J., Wang G.-H., Wu B., Wang J., Wang Q., Hu L.-P., Shao J.-Q., Wang Y.-T., Li J., Gu P., Lu B., Zhonghua Nan Ke Xue 15 (2009) 126–129.

[6]N. Xia, J. Li, H. Wang, J. Wang, Y. Wang, Exp. Ther. Med. 11 (2016) 353–359.

[7]T. Yan, B. He, S. Wan, M. Xu, H. Yang, F. Xiao, K. Bi, Y. Jia, Sci. Rep. 7 (2017) 6903.

[8]Xia P., Sun L.-J., Wang J., Zhonghua Nan Ke Xue 17 (2011) 472–476.

[9]W.-W. Chen, R.-R. He, Y.-F. Li, S.-B. Li, B. Tsoi, H. Kurihara, Phytomedicine 18 (2011) 1144–1147.

[10]Y. Liu, Z. Liu, M. Wei, M. Hu, K. Yue, R. Bi, S. Zhai, Z. Pi, F. Song, Z. Liu, Food Funct. 10 (2019) 432–447.

[11]B.-B. Wei, M.-Y. Liu, Z.-X. Chen, M.-J. Wei, Acta Pharmacol. Sin. 39 (2018) 616–625.

[12]N. Egashira, K. Kurauchi, K. Iwasaki, K. Mishima, K. Orito, R. Oishi, M. Fujiwara, Phytother. Res. 22 (2008) 49–52.

[13]V.V. Giridharan, R.A. Thandavarayan, S. Sato, K.M. Ko, T. Konishi, Free Radic. Res. 45 (2011) 950–958.

[14]C. Zhang, X. Mao, X. Zhao, Z. Liu, B. Liu, H. Li, K. Bi, Y. Jia, Fitoterapia 96 (2014) 123–130.

[15]N. Li, J. Liu, M. Wang, Z. Yu, K. Zhu, J. Gao, C. Wang, J. Sun, J. Chen, H. Li, Biomed. Pharmacother. 103 (2018) 509–516.

[16]B. Wei, Q. Li, R. Fan, D. Su, X. Chen, Y. Jia, K. Bi, J. Pharm. Biomed. Anal. 88 (2014) 416–422.

[17]H. Zhu, L. Zhang, G. Wang, Z. He, Y. Zhao, Y. Xu, Y. Gao, L. Zhang, J. Food Drug Anal. 24 (2016) 831–838.

[18]F. Huang, Y. Xiong, L. Xu, S. Ma, C. Dou, J. Ethnopharmacol. 110 (2007) 471–475.

[19]N. Chen, P.Y. Chiu, K.M. Ko, Biol. Pharm. Bull. 31 (2008) 1387–1391.

[20]C.-L. Li, Y.-H. Tsuang, T.-H. Tsai, Nutrients 11 (2019).

[21]K.M. Ko, N. Chen, H.Y. Leung, E.P.K. Leong, M.K.T. Poon, P.Y. Chiu, Biofactors 34 (2008) 331–342.

[22]S.Y. Park, S.J. Park, T.G. Park, S. Rajasekar, S.-J. Lee, Y.-W. Choi, Int. Immunopharmacol. 17 (2013) 415–426.

[23]M.-Y. Song, J.-H. Wang, T. Eom, H. Kim, Nutr. Res. 35 (2015) 655–663.

[24]Y. Qi, L. Chen, K. Gao, Z. Shao, X. Huo, M. Hua, S. Liu, Y. Sun, S. Li, Int. J. Biol. Macromol. 124 (2019) 627–634.

[25]M. Kortesoja, E. Karhu, E.S. Olafsdottir, J. Freysdottir, L. Hanski, Free Radic. Biol. Med. 131 (2019) 309–317.

[26]T. Zhao, Y. Feng, J. Li, R. Mao, Y. Zou, W. Feng, D. Zheng, W. Wang, Y. Chen, L. Yang, X. Wu, Int. J. Biol. Macromol. 65 (2014) 33–40.

[27]T. Zhao, G. Mao, R. Mao, Y. Zou, D. Zheng, W. Feng, Y. Ren, W. Wang, W. Zheng, J. Song, Y. Chen, L. Yang, X. Wu, Food Chem. Toxicol. 55 (2013) 609–616.

[28]L.-M. Zhao, Y.-L. Jia, M. Ma, Y.-Q. Duan, L.-H. Liu, Int. J. Biol. Macromol. 76 (2015) 63–69.

[29]J. Yu, L. Cong, C. Wang, H. Li, C. Zhang, X. Guan, P. Liu, Y. Xie, J. Chen, J. Sun, Exp. Ther. Med. 15 (2018) 4755–4762.

[30]S.-H. Tang, R.-R. He, T. Huang, C.-Z. Wang, Y.-F. Cao, Y. Zhang, H. Kurihara, J. Ethnopharmacol. 134 (2011) 141–146.

[31]Y.H. Kang, H.M. Shin, Immunopharmacol. Immunotoxicol. 34 (2012) 292–298.

[32]H. Kim, Y.-T. Ahn, Y.S. Kim, S.I. Cho, W.G. An, Pharmacogn. Mag. 10 (2014) S80–5.

[33]A.Y.S. Yip, W.T.Y. Loo, L.W.C. Chow, Biomed. Pharmacother. 61 (2007) 588–590.

[34]P.Y. Chiu, H.Y. Leung, M.K.T. Poon, K.M. Ko, Biogerontology 7 (2006) 199–210.

[35]Y. Lu, W.-J. Wang, Y.-Z. Song, Z.-Q. Liang, Pharm. Biol. 52 (2014) 1302–1307.

[36]K.-Y. Kim, S.-K. Ku, K.-W. Lee, C.-H. Song, W.G. An, J. Ethnopharmacol. 212 (2018) 175–187.

[37]J.-S. Kim, J.S. Takanche, J.-E. Kim, S.-H. Jeong, S.-H. Han, H.-K. Yi, Phytother. Res. 33 (2019) 1865–1877.

[38]H.-F. Chiu, T.-Y. Chen, Y.-T. Tzeng, C.-K. Wang, Phytother. Res. 27 (2013) 368–373.

[39]D. Tsi, A. Tan, Bioinformation 2 (2008) 249–252.

[40]G. Aslanyan, E. Amroyan, E. Gabrielyan, M. Nylander, G. Wikman, A. Panossian, Phytomedicine 17 (2010) 494–499.

[41]N. Kormosh, K. Laktionov, M. Antoshechkina, Phytother. Res. 20 (2006) 424–425.