Sesame Seed Extract


Sesame Seeds


Supports cognitive function*

Supports mood*

Supports antioxidant defenses*

Supports the gut microbiota*


Sesame (Sesamum indicum) seeds are one of the two best food sources of lignans. Lignans are a category of polyphenols, and like other polyphenols are broadly described as antioxidants. Lignans are metabolized by the gut microflora. During this process, both the lignans and gut microflora are changed. As a general rule of thumb, lignans shape the populations of gut microbiota, and as a result, may influence the gut-brain axis. Sesame seeds are also a source for tocopherols and tocotrienols, the class of compounds with vitamin E activity. Sesame lignans, both individually and in combination, influence a range of biological functions. While sesame seeds have about 16 different lignans, the one that has received the most research is sesamin. In animal studies, sesamin has been neuroprotective and supports molecules like BDNF, which is involved in nervous system repair and growth. It has also countered changes in behavior caused by stress, positively influenced both cardiovascular and liver health, and supported healthy aging functions. Some of these findings have been replicated in human studies [1–3]. 


Sesame seed extract is standardized to contain not less than 10% sesamin, since this is the lignan that has been the subject of the majority of research, including human studies.

Sesame seed extract is Non-GMO and Vegan.


Sesamin, a lignan found in sesame seeds, is the most studied compound found in sesame seeds. When we include sesame seed extract in a formulation, we are doing so keeping in mind the amount of sesamin that will be provided. In human cognitive studies, sesamin has typically been given at a dose of 10 mg daily, though in some cases, it has been 10 mg of several of the lignans together. In general, we think of polyphenolic compounds—lignans fall within this category of secondary plant metabolites—as being hormetic; something that in low to moderate amounts helps promote an adaptive response to stress, but which might not be as beneficial at very high doses especially if taken long-term (see Neurohacker Dosing Principles). Our goal with sesame seed extract (and sesamin), as with all ingredient choices, is to select the appropriate dose keeping in mind both the ingredient and the other ingredients being used in a formulation. In other words, if we are also supplying other extracts with complimentary polyphenols such as other ingredients that include lignans, we are likely to use less than if the only lignan-containing ingredient we were using was sesame seed extract.


Brain function

Supports learning and memory [4–9]

Supports serotonin signaling [10]

Supports adrenergic signaling [10]

Supports acetylcholine signaling [5]

Supports brain-derived neurotrophic factor (BDNF) [5,6,8]

Supports brain mitochondrial function [6]

Supports neuroprotective functions [5,9,11–16]

Supports auditory function [17]

Supports blood-barrier function [18]


Supports healthy behavioral and physiological responses to stress [7,8,10,19–22]

Antioxidant defenses

Supports antioxidant defenses (SOD, CAT, GSH) [7,13]

Supports the Nrf2 signaling pathway [7,23]

Supports phase II antioxidant enzymes (HO-1 and NQO1) [7]

Counters ROS production and oxidative stress [2,13,15,24]

Counters lipid peroxidation [13]

Gut microbiota

Supports the composition of the gut microbiota [10,24]

Supports intestinal barrier function [10]

Supports GI Nrf2 signaling [23]

Immune system

Supports general immune health [25]

Supports adaptive immunity [26,27]

Supports immune system communication [28–31]


Supports skin photoprotective functions [32,33] 

Healthy aging and longevity

Supports liver function [13,34]

Supports healthy metabolic function [6,35–37]

Supports cardiovascular health [35,38–41] 

Supports mitochondrial function [7,42]

Supports autophagy [43,44]

Extends lifespan (Drosophila melanogaster and Caenorhabditis elegans) [15,25,45,46]


With astaxanthin in supporting cognitive function [47] and recovery from mental fatigue [48]

With Schisandra chinensis—another source of lignans—to support liver health [49] and blood fluidity [50]

With Quercetin to support neuroprotective functions [51,52]

With vitamin E to support as an antioxidant and to support sleep and counter fatigue [53]

With vitamin E for immune support [54]

Dietary sesame seed and sesamin enhance vitamin K [55] and vitamin E status [55–59]

Dietary supplementation of sesamin supports essential fatty acid metabolism and status [60–64]

With lipoic acid to support fatty acid metabolism [65]


[1]M.-S. Wu, L.B.B. Aquino, M.Y.U. Barbaza, C.-L. Hsieh, K.A.D. Castro-Cruz, L.-L. Yang, P.-W. Tsai, Molecules 24 (2019).

[2]L. de A.V. Gouveia, C.A. Cardoso, G.M.M. de Oliveira, G. Rosa, A.S.B. Moreira, J. Med. Food 19 (2016) 337–345.

[3]A.F. Majdalawieh, M. Massri, G.K. Nasrallah, Eur. J. Pharmacol. 815 (2017) 512–521.

[4]T.T. Zhao, K.S. Shin, K.S. Kim, H.J. Park, H.J. Kim, K.E. Lee, M.K. Lee, Neuroscience 339 (2016) 644–654.

[5]S.B. Chidambaram, A. Pandian, S. Sekar, S. Haridass, R. Vijayan, L.K. Thiyagarajan, J. Ravindran, H.R. Balaji Raghavendran, T. Kamarul, Environ. Toxicol. 31 (2016) 1955–1963.

[6]Z. Liu, Y. Sun, Q. Qiao, T. Zhao, W. Zhang, B. Ren, Q. Liu, X. Liu, Food Funct. 8 (2017) 710–719.

[7]B. Ren, T. Yuan, Z. Diao, C. Zhang, Z. Liu, X. Liu, Food Funct. 9 (2018) 5912–5924.

[8]Y. Zhao, Q. Wang, M. Jia, S. Fu, J. Pan, C. Chu, X. Liu, X. Liu, Z. Liu, J. Nutr. Biochem. 64 (2019) 61–71.

[9]S. Shimoyoshi, D. Takemoto, Y. Ono, Y. Kitagawa, H. Shibata, S. Tomono, K. Unno, K. Wakabayashi, Nutrients 11 (2019).

[10]Q. Wang, M. Jia, Y. Zhao, Y. Hui, J. Pan, H. Yu, S. Yan, X. Dai, X. Liu, Z. Liu, J. Agric. Food Chem. 67 (2019) 12441–12451.

[11]S. Ahmad, N.M. Elsherbiny, R. Haque, M.B. Khan, T. Ishrat, Z.A. Shah, M.M. Khan, M. Ali, A. Jamal, D.P. Katare, G.I. Liou, K. Bhatia, Neurotoxicology 45 (2014) 100–110.

[12]N. Jamarkattel-Pandit, N.R. Pandit, M.-Y. Kim, S.H. Park, K.S. Kim, H. Choi, H. Kim, Y. Bu, Planta Med. 76 (2010) 20–26.

[13]B.E. Oyinloye, S.O. Nwozo, G.H. Amah, A.O. Awoyinka, O.A. Ojo, B.O. Ajiboye, H.A. Tijani, Nutr. Res. Pract. 8 (2014) 54–58.

[14]T. Baluchnejadmojarad, M. Mansouri, J. Ghalami, Z. Mokhtari, M. Roghani, Biomed. Pharmacother. 88 (2017) 754–761.

[15]T.D. Le, Y. Nakahara, M. Ueda, K. Okumura, J. Hirai, Y. Sato, D. Takemoto, N. Tomimori, Y. Ono, M. Nakai, H. Shibata, Y.H. Inoue, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 1826–1839.

[16]Y. Farbood, S. Ghaderi, M. Rashno, S.E. Khoshnam, L. Khorsandi, A. Sarkaki, M. Rashno, Life Sci. 230 (2019) 169–177.

[17]Y.H. Kim, E.Y. Kim, I. Rodriguez, Y.H. Nam, S.Y. Jeong, B.N. Hong, S.-Y. Choung, T.H. Kang, J. Med. Food 23 (2020) 491–498.

[18]Y.-L. Liu, Z.-M. Xu, G.-Y. Yang, D.-X. Yang, J. Ding, H. Chen, F. Yuan, H.-L. Tian, Acta Pharmacol. Sin. 38 (2017) 1445–1455.

[19]M.M. Khan, T. Ishrat, A. Ahmad, M.N. Hoda, M.B. Khan, G. Khuwaja, P. Srivastava, S.S. Raza, F. Islam, S. Ahmad, Chem. Biol. Interact. 183 (2010) 255–263.

[20]H.-L. Guo, Y. Xiao, Z. Tian, X.-B. Li, D.-S. Wang, X.-S. Wang, Z.-W. Zhang, M.-G. Zhao, S.-B. Liu, Nutr. Neurosci. 19 (2016) 231–236.

[21]T.T. Zhao, K.S. Shin, H.J. Park, K.S. Kim, K.E. Lee, Y.J. Cho, M.K. Lee, Neurosci. Lett. 634 (2016) 114–118.

[22]T.T. Zhao, K.S. Shin, H.J. Park, B.R. Yi, K.E. Lee, M.K. Lee, Neurochem. Res. 42 (2017) 1123–1129.

[23]X. Bai, X. Gou, P. Cai, C. Xu, L. Cao, Z. Zhao, M. Huang, J. Jin, Oxid. Med. Cell. Longev. 2019 (2019) 2432416.

[24]C.V. da S. Barbosa, A.S. Silva, C.V.C. de Oliveira, N.M.L. Massa, Y.R.F. de Sousa, W.K.A. da Costa, A.C. Silva, P. Delatorre, R. Carvalho, V. de A. Braga, M. Magnani, Front. Physiol. 8 (2017) 196.

[25]Y. Yaguchi, T. Komura, N. Kashima, M. Tamura, E. Kage-Nakadai, S. Saeki, K. Terao, Y. Nishikawa, Eur. J. Nutr. 53 (2014) 1659–1668.

[26]M. Nonaka, K. Yamashita, Y. Iizuka, M. Namiki, M. Sugano, Biosci. Biotechnol. Biochem. 61 (1997) 836–839.

[27]J.Y. Gu, Y. Wakizono, A. Dohi, M. Nonaka, M. Sugano, K. Yamada, Biosci. Biotechnol. Biochem. 62 (1998) 1917–1924.

[28]C.-H. Lin, M.-L. Shen, N. Zhou, C.-C. Lee, S.-T. Kao, D.C. Wu, PLoS One 9 (2014) e96091.

[29]K. Fanhchaksai, K. Kodchakorn, P. Pothacharoen, P. Kongtawelert, In Vitro Cell. Dev. Biol. Anim. 52 (2016) 107–119.

[30]M. Mohammad Shahi, M. Zakerzadeh, M. Zakerkish, M. Zarei, A. Saki, J. Diet. Suppl. 14 (2017) 65–75.

[31]B. Helli, M.M. Shahi, K. Mowla, M.T. Jalali, H.K. Haghighian, Phytother. Res. 33 (2019) 2421–2428.

[32]Y. Yamada, M. Obayashi, T. Ishikawa, Y. Kiso, Y. Ono, K. Yamashita, J. Nutr. Sci. Vitaminol. 54 (2008) 117–123.

[33]T.-Y. Lin, P.-Y. Wu, C.-W. Hou, T.-Y. Chien, Q.-X. Chang, K.-C. Wen, C.-Y. Lin, H.-M. Chiang, Biomolecules 9 (2019).

[34]N. Cengiz, S. Kavak, A. Güzel, H. Ozbek, H. Bektaş, A. Him, E. Erdoğan, R. Balahoroğlu, J. Membr. Biol. 246 (2013) 1–6.

[35]P. Mirmiran, Z. Bahadoran, M. Golzarand, A. Rajab, F. Azizi, Arch. Iran. Med. 16 (2013) 651–656.

[36]S. Asgary, M. Rafieian-Kopaei, S. Najafi, E. Heidarian, A. Sahebkar, ScientificWorldJournal 2013 (2013) 365892.

[37]N.P. Visavadiya, A.V.R.L. Narasimhacharya, Food Chem. Toxicol. 46 (2008) 1889–1895.

[38]W.-H. Wu, Y.-P. Kang, N.-H. Wang, H.-J. Jou, T.-A. Wang, J. Nutr. 136 (2006) 1270–1275.

[39]T. Miyawaki, H. Aono, Y. Toyoda-Ono, H. Maeda, Y. Kiso, K. Moriyama, J. Nutr. Sci. Vitaminol. 55 (2009) 87–91.

[40]B. Helli, K. Mowla, M. Mohammadshahi, M.T. Jalali, J. Am. Coll. Nutr. 35 (2016) 300–307.

[41]H. Khosravi-Boroujeni, E. Nikbakht, E. Natanelov, S. Khalesi, J. Sci. Food Agric. 97 (2017) 3087–3094.

[42]S. Takada, S. Kinugawa, S. Matsushima, D. Takemoto, T. Furihata, W. Mizushima, A. Fukushima, T. Yokota, Y. Ono, H. Shibata, K. Okita, H. Tsutsui, Exp. Physiol. 100 (2015) 1319–1330.

[43]H. Dou, S. Yang, Y. Hu, D. Xu, L. Liu, X. Li, Life Sci. 200 (2018) 87–93.

[44]H. Tanabe, K. Kuribayashi, N. Tsuji, M. Tanaka, D. Kobayashi, N. Watanabe, Int. J. Oncol. 39 (2011) 33–40.

[45]Y. Zuo, C. Peng, Y. Liang, K.Y. Ma, H.Y.E. Chan, Y. Huang, Z.-Y. Chen, Biogerontology 14 (2013) 107–119.

[46]Y. Nakatani, Y. Yaguchi, T. Komura, M. Nakadai, K. Terao, E. Kage-Nakadai, Y. Nishikawa, Eur. J. Nutr. 57 (2018) 1137–1146.

[47]N. Ito, H. Saito, S. Seki, F. Ueda, T. Asada, J. Alzheimers. Dis. 62 (2018) 1767–1775.

[48]A. Imai, Y. Oda, N. Ito, S. Seki, K. Nakagawa, T. Miyazawa, F. Ueda, Nutrients 10 (2018).

[49]H.-F. Chiu, T.-Y. Chen, Y.-T. Tzeng, C.-K. Wang, Phytother. Res. 27 (2013) 368–373.

[50]D. Tsi, A. Tan, Bioinformation 2 (2008) 249–252.

[51]J. Bournival, M. Plouffe, J. Renaud, C. Provencher, M.-G. Martinoli, Oxid. Med. Cell. Longev. 2012 (2012) 921941.

[52]J. Bournival, M.-A. Francoeur, J. Renaud, M.-G. Martinoli, Rejuvenation Res. 15 (2012) 322–333.

[53]D. Takemoto, Y. Yasutake, N. Tomimori, Y. Ono, H. Shibata, J. Hayashi, Glob. J. Health Sci. 7 (2015) 1–10.

[54]J.Y. Gu, Y. Wakizono, A. Tsujita, B.O. Lim, M. Nonaka, K. Yamada, M. Sugano, Biosci. Biotechnol. Biochem. 59 (1995) 2198–2202.

[55]F. Hanzawa, S. Nomura, E. Sakuma, T. Uchida, S. Ikeda, J. Nutr. 143 (2013) 1067–1073.

[56]R.V. Cooney, L.J. Custer, L. Okinaka, A.A. Franke, Nutr. Cancer 39 (2001) 66–71.

[57]K. Yamashita, Y. Iizuka, T. Imai, M. Namiki, Lipids 30 (1995) 1019–1028.

[58]A. Kamal-Eldin, D. Pettersson, L.A. Appelqvist, Lipids 30 (1995) 499–505.

[59]K. Yamashita, Y. Nohara, K. Katayama, M. Namiki, J. Nutr. 122 (1992) 2440–2446.

[60]S. Shimizu, K. Akimoto, Y. Shinmen, H. Kawashima, M. Sugano, H. Yamada, Lipids 26 (1991) 512–516.

[61]S. Ikeda, M. Kagaya, K. Kobayashi, T. Tohyama, Y. Kiso, N. Higuchi, K. Yamashita, J. Nutr. Sci. Vitaminol. 49 (2003) 270–276.

[62]A. Mizukuchi, R. Umeda-Sawada, O. Igarashi, J. Nutr. Sci. Vitaminol. 49 (2003) 320–326.

[63]S. Trattner, B. Ruyter, T.K. Østbye, T. Gjøen, V. Zlabek, A. Kamal-Eldin, J. Pickova, Lipids 43 (2008) 999–1008.

[64]S. Trattner, A. Kamal-Eldin, E. Brännäs, A. Moazzami, V. Zlabek, P. Larsson, B. Ruyter, T. Gjøen, J. Pickova, Lipids 43 (2008) 989–997.

[65]T. Ide, A. Azechi, S. Kitade, Y. Kunimatsu, N. Suzuki, C. Nakajima, Eur. J. Nutr. 52 (2013) 1015–1027.