VINEATROL®20 Grapevine Extract


Common Grapevine


Supports healthy aging*

Supports cognitive function*

Supports mood*

Supports antioxidant defenses*


Vineatrol®20 is a grapevine shoot extract rich in resveratrol monomers and oligomers. Resveratrol is best known as a calorie restriction mimetic (i.e., supports healthy aging functions), and for supporting metabolism, heart health, immunity, and cognition. Resveratrol derivatives have been the subject of thousands of pre-clinical and clinical research studies. While trans-resveratrol is the most studied of the resveratrol derivative family, some of the other resveratrol derivatives may have structure/function benefits not shared by trans-resveratrol, which could be more potent than trans-resveratrol for certain functions, and tend to be complementary when given together. In other words, there’s a synergy in the mix of resveratrol derivatives that naturally occur in the grape plant. This synergy has shown up in experiments done on Vineatrol®,  where it was a stronger antioxidant than resveratrol alone and a more potent sirtuin 1 (Sirt-1) activator than a resveratrol dimer. But what exactly are resveratrol monomers and oligomers? Trans-resveratrol is an example of a resveratrol monomer—a monomer is a molecule that can be bonded to other identical molecules—so think of it as one unit of resveratrol. Trans-ε-viniferin is a resveratrol dimer, which means it’s two identical resveratrol molecules bound together into an oligomer: Think of it as two units of resveratrol. But there are quite a few other resveratrol derivatives in the resveratrol oligomer family, since up to eight resveratrol molecules can couple together. The advantage of Vineatrol®20 is that it is standardized to contain at least 20% of these different resveratrols.


Vineatrol®20 is a grapevine shoot extract from Vitis vinifera (i.e., the common grapevine) grown and harvested in the famous Bordeaux vineyards.

Vineatrol®20 is triple standardized for: (1) trans-resveratrol >5%; (2) trans-ε-viniferin >5%; and (3) total resveratrol monomers and oligomers >20% (hence the 20 in the name). 

Vineatrol®20 is a registered trademark of ACTICHEM, a French company specializing in the development of resveratrol and resveratrol derivatives extracted from grapevines.

Vineatrol®20 is Non-GMO and Vegan.


When thinking about the dose of Vineatrol®20 there are a few things to keep in mind. This grapevine extract has been standardized to contain at least 5% trans-resveratrol and not less than 20% resveratrol monomers and oligomers. When we include this extract in a formulation it’s because we want to give a range of resveratrol monomers and oligomers (not just trans-resveratrol). Focusing only on the trans-resveratrol content misses the big picture. The other thing to keep in mind is that resveratrols are not examples of more is better compounds. They are better thought of as a hormetic; something that in low to moderate amounts helps promote an adaptive response to stress, but which might not be as beneficial at very high doses especially if taken long-term (see Neurohacker Dosing Principles). Our goal with Vineatrol®20, as with all ingredient choices, is to select the appropriate dose keeping in mind both the ingredient and the other ingredients being used in a formulation. In other words, if we are also supplying other extracts with complimentary polyphenols, we are likely to use less than if the only polyphenol-containing ingredient we were using was Vineatrol®20. Lastly, while high amounts of trans-resveratrol have been studied, when used as part of a grape extract, the amount of resveratrol in studies has typically been less than 10 mg and as low as 1 mg.


Brain function

Supports cerebral blood flow [1–4]

Supports neural stem cell functions [5,6]

Supports neurogenesis [5–7]

Supports brain-derived neurotrophic factor (BDNF) [7–18]

Supports HPA axis signaling [13,18]

Supports neuroprotective functions [10,18–21]

Supports executive function [2,22]

Supports learning and memory (animals) [14,15,17,23]

Cardiovascular function

Supports healthy vascular function [24–27]

Supports cardiac function [28]

Exercise performance

Supports endurance performance  [29]

Supports muscle structure and function [30,31]

Supports glucose uptake in muscles [28]

Metabolic Function

Supports healthy insulin sensitivity [26,29,32–36]

Supports healthy lipid levels [29,32,37]

Supports thermogenesis [29]

Supports adiponectin levels [37]

Mitochondrial structure and function

Supports peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) [29,30,32–34,37–39]

Supports nuclear transcriptional factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF1], NRF2, mitochondrial transcription factor A [TFAM]) [29,30,39,40]

Supports mitochondrial size and number [29,33]

Supports inner mitochondrial membrane folding (cristae) [29]

Supports mitochondrial DNA (mtDNA) [29,30,34]

Supports mitochondrial membrane potential [30]

Supports citrate synthase [29,32]

Supports ATP production [30,39]

Supports NAD+ pool [30,34,41]

Supports components of the electron transport chain - complex I-V [30]

Supports β-oxidation [29,37,41,42]

Signaling pathways

Supports AMPK signaling [30,32–35,37,39,41,43]

Supports liver kinase B1 (LKB1) signaling [30,39]

Supports peroxisome proliferator-activated receptor alpha (PPARα) [29]

Supports peroxisome proliferator-activated receptor gamma (PPARγ) [37]

Supports estrogen-related receptor alpha (ERRα) [29,34]

Supports forkhead transcription factor O 1 (FOXO1) [37]

Downregulates phosphodiesterase (PDE) 1 and 4  and supports adenylate cyclase/cAMP levels [41,44]

Antioxidant defenses

Supports antioxidant activity [21,34,36,37,40,41,45,46]

Supports antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [24,25]

Downregulates pro-oxidant enzymes (NADPH oxidase) [24,25]

Gut microbiota

Supports healthy gut microbiota [47–53]

Healthy aging and longevity 

Supports stem cells [54–66]

Supports telomerase activity [54–56,67,68]

Supports anti-senescence functions [55,56,61,68]

Activates SIRT1 [30,32,37,38,40,43,69,70]

Supports mitochondrial uncoupling proteins UCP1, UCP2, and UCP3 [29,34]

Supports Klotho [40,70]

Supports mTOR signaling [33]

Delays age-related physiological changes [28]

Extends lifespan (mice on high-calorie diet, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae) [27,33,69,71,72] 

Circadian rhythms

Supports circadian rhythms [73–76]

Supports clock gene expression [73,76]

Ingredient Synergies




[1] D.O. Kennedy, E.L. Wightman, J.L. Reay, G. Lietz, E.J. Okello, A. Wilde, C.F. Haskell, Am. J. Clin. Nutr. 91 (2010) 1590–1597.

[2] R.H.X. Wong, D. Raederstorff, P.R.C. Howe, Nutrients 8 (2016).

[3] E.L. Wightman, C.F. Haskell-Ramsay, J.L. Reay, G. Williamson, T. Dew, W. Zhang, D.O. Kennedy, Br. J. Nutr. 114 (2015) 1427–1437.

[4] H.M. Evans, P.R.C. Howe, R.H.X. Wong, Nutrients 9 (2017).

[5] L. Xu, Y. Yang, L. Gao, J. Zhao, Y. Cai, J. Huang, S. Jing, X. Bao, Y. Wang, J. Gao, H. Xu, X. Fan, Biochim. Biophys. Acta 1852 (2015) 1298–1310.

[6] N.B. Bottari, M.R.C. Schetinger, M.M. Pillat, T.V. Palma, H. Ulrich, M.S. Alves, V.M. Morsch, C. Melazzo, L.D. de Barros, J.L. Garcia, A.S. Da Silva, Mol. Neurobiol. 56 (2019) 2328–2338.

[7] S. Madhyastha, S. Sekhar, G. Rao, Int. J. Dev. Neurosci. 31 (2013) 580–585.

[8] M. Wiciński, M. Socha, M. Walczak, E. Wódkiewicz, B. Malinowski, S. Rewerski, K. Górski, K. Pawlak-Osińska, Nutrients 10 (2018).

[9] M. Rahvar, M. Nikseresht, S.M. Shafiee, F. Naghibalhossaini, M. Rasti, M.R. Panjehshahin, A.A. Owji, Neurochem. Res. 36 (2011) 761–765.

[10] L. Ge, L. Liu, H. Liu, S. Liu, H. Xue, X. Wang, L. Yuan, Z. Wang, D. Liu, Eur. J. Pharmacol. 768 (2015) 49–57.

[11] G. Li, G. Wang, J. Shi, X. Xie, N. Fei, L. Chen, N. Liu, M. Yang, J. Pan, W. Huang, Y. Xu, Neuropharmacology 133 (2018) 181–188.

[12] X.-H. Yang, S.-Q. Song, Y. Xu, Neuropsychiatr. Dis. Treat. 13 (2017) 2727–2736.

[13] S.H. Ali, R.M. Madhana, A. K V., E.R. Kasala, L.N. Bodduluru, S. Pitta, J.R. Mahareddy, M. Lahkar, Steroids 101 (2015) 37–42.

[14] J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Endocrine Journal 62 (2015) 927–938.

[15] Y.-N. Zhao, W.-F. Li, F. Li, Z. Zhang, Y.-D. Dai, A.-L. Xu, C. Qi, J.-M. Gao, J. Gao, Biochem. Biophys. Res. Commun. 435 (2013) 597–602.

[16] J. Song, S.Y. Cheon, W. Jung, W.T. Lee, J.E. Lee, Int. J. Mol. Sci. 15 (2014) 15512–15529.

[17] J. Shen, L. Xu, C. Qu, H. Sun, J. Zhang, Behav. Brain Res. 349 (2018) 1–7.

[18] C. Pang, L. Cao, F. Wu, L. Wang, G. Wang, Y. Yu, M. Zhang, L. Chen, W. Wang, W. Lv, L. Chen, J. Zhu, J. Pan, H. Zhang, Y. Xu, L. Ding, Neuropharmacology 97 (2015) 447–456.

[19] G. Wang, L. Chen, X. Pan, J. Chen, L. Wang, W. Wang, R. Cheng, F. Wu, X. Feng, Y. Yu, H.-T. Zhang, J.M. O’Donnell, Y. Xu, Oncotarget 7 (2016).

[20] Q. Zhang, X. Wang, X. Bai, Y. Xie, T. Zhang, S. Bo, X. Chen, Mol. Med. Rep. 16 (2017) 2095–2100.

[21] R. Moldzio, K. Radad, C. Krewenka, B. Kranner, J.C. Duvigneau, W.-D. Rausch, J. Neural Transm. 120 (2013) 1271–1280.

[22] S.D. Anton, N. Ebner, J.M. Dzierzewski, Z.Z. Zlatar, M.J. Gurka, V.M. Dotson, J. Kirton, R.T. Mankowski, M. Marsiske, T.M. Manini, J. Altern. Complement. Med. 24 (2018) 725–732.

[23] Y. Yazir, T. Utkan, N. Gacar, F. Aricioglu, Physiol. Behav. 138 (2015) 297–304.

[24] G. Spanier, H. Xu, N. Xia, S. Tobias, S. Deng, L. Wojnowski, U. Forstermann, H. Li, J. Physiol. Pharmacol. 60 Suppl 4 (2009) 111–116.

[25] N. Xia, A. Daiber, A. Habermeier, E.I. Closs, T. Thum, G. Spanier, Q. Lu, M. Oelze, M. Torzewski, K.J. Lackner, T. Münzel, U. Förstermann, H. Li, J. Pharmacol. Exp. Ther. 335 (2010) 149–154.

[26] J.P. Crandall, V. Oram, G. Trandafirescu, M. Reid, P. Kishore, M. Hawkins, H.W. Cohen, N. Barzilai, J. Gerontol. A Biol. Sci. Med. Sci. 67 (2012) 1307–1312.

[27] K.J. Pearson, J.A. Baur, K.N. Lewis, L. Peshkin, N.L. Price, N. Labinskyy, W.R. Swindell, D. Kamara, R.K. Minor, E. Perez, H.A. Jamieson, Y. Zhang, S.R. Dunn, K. Sharma, N. Pleshko, L.A. Woollett, A. Csiszar, Y. Ikeno, D. Le Couteur, P.J. Elliott, K.G. Becker, P. Navas, D.K. Ingram, N.S. Wolf, Z. Ungvari, D.A. Sinclair, R. de Cabo, Cell Metab. 8 (2008) 157–168.

[28] J.L. Barger, T. Kayo, J.M. Vann, E.B. Arias, J. Wang, T.A. Hacker, Y. Wang, D. Raederstorff, J.D. Morrow, C. Leeuwenburgh, D.B. Allison, K.W. Saupe, G.D. Cartee, R. Weindruch, T.A. Prolla, PLoS One 3 (2008) e2264.

[29] M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109–1122.

[30] N.L. Price, A.P. Gomes, A.J.Y. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, B.P. Hubbard, A.T. Varela, J.G. Davis, B. Varamini, A. Hafner, R. Moaddel, A.P. Rolo, R. Coppari, C.M. Palmeira, R. de Cabo, J.A. Baur, D.A. Sinclair, Cell Metab. 15 (2012) 675–690.

[31] J.-P.K. Hyatt, L. Nguyen, A.E. Hall, A.M. Huber, J.C. Kocan, J.A. Mattison, R. de Cabo, J.R. LaRocque, R.J. Talmadge, Front. Physiol. 7 (2016) 77.

[32] S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen, Cell Metab. 14 (2011) 612–622.

[33] J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Nature 444 (2006) 337–342.

[34] J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554–563.

[35] C.E. Park, M.-J. Kim, J.H. Lee, B.-I. Min, H. Bae, W. Choe, S.-S. Kim, J. Ha, Exp. Mol. Med. 39 (2007) 222–229.

[36] P. Brasnyó, G.A. Molnár, M. Mohás, L. Markó, B. Laczy, J. Cseh, E. Mikolás, I.A. Szijártó, A. Mérei, R. Halmai, L.G. Mészáros, B. Sümegi, I. Wittmann, Br. J. Nutr. 106 (2011) 383–389.

[37] J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833–42.

[38] T.D. Scribbans, J.K. Ma, B.A. Edgett, K.A. Vorobej, A.S. Mitchell, J.G.E. Zelt, C.A. Simpson, J. Quadrilatero, B.J. Gurd, Appl. Physiol. Nutr. Metab. 39 (2014) 1305–1313.

[39] B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217–7222.

[40] P. Zhang, Y. Li, Y. Du, G. Li, L. Wang, F. Zhou, Transplant. Proc. 48 (2016) 3378–3386.

[41] S.-J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, J.H. Chung, Cell 148 (2012) 421–433.

[42] J. Most, S. Timmers, I. Warnke, J.W. Jocken, M. van Boekschoten, P. de Groot, I. Bendik, P. Schrauwen, G.H. Goossens, E.E. Blaak, Am. J. Clin. Nutr. 104 (2016) 215–227.

[43] K.P. Goh, H.Y. Lee, D.P. Lau, W. Supaat, Y.H. Chan, A.F.Y. Koh, Int. J. Sport Nutr. Exerc. Metab. 24 (2014) 2–13.

[44] A.M. El-Mowafy, M. Alkhalaf, Carcinogenesis 24 (2003) 869–873.

[45] Y.K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71 (2002) 245–249.

[46] S.S. Leonard, C. Xia, B.-H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, X. Shi, Biochem. Biophys. Res. Commun. 309 (2003) 1017–1026.

[47] Y.-L. Tain, W.-C. Lee, K.L.H. Wu, S. Leu, J.Y.H. Chan, Mol. Nutr. Food Res. (2018) e1800066.

[48] Y. Zheng, W. Wu, G. Hu, L. Qiu, S. Meng, C. Song, L. Fan, Z. Zhao, X. Bing, J. Chen, Fish Shellfish Immunol. 77 (2018) 200–207.

[49] L. Zhao, Q. Zhang, W. Ma, F. Tian, H. Shen, M. Zhou, Food Funct. 8 (2017) 4644–4656.

[50] J.K. Bird, D. Raederstorff, P. Weber, R.E. Steinert, Adv. Nutr. 8 (2017) 839–849.

[51] A.S. Korsholm, T.N. Kjær, M.J. Ornstrup, S.B. Pedersen, Int. J. Mol. Sci. 18 (2017).

[52] M.M. Sung, T.T. Kim, E. Denou, C.-L.M. Soltys, S.M. Hamza, N.J. Byrne, G. Masson, H. Park, D.S. Wishart, K.L. Madsen, J.D. Schertzer, J.R.B. Dyck, Diabetes 66 (2017) 418–425.

[53] M. Larrosa, M.J. Yañéz-Gascón, M.V. Selma, A. González-Sarrías, S. Toti, J.J. Cerón, F. Tomás-Barberán, P. Dolara, J.C. Espín, J. Agric. Food Chem. 57 (2009) 2211–2220.

[54] V.P. Pearce, J. Sherrell, Z. Lou, L. Kopelovich, W.E. Wright, J.W. Shay, Oncogene 27 (2008) 2365–2374.

[55] L. Xia, X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, C.L. Zeng, F.R. Zhang, J.Z. Chen, Br. J. Pharmacol. 155 (2008) 387–394.

[56] X.-B. Wang, L. Zhu, J. Huang, Y.-G. Yin, X.-Q. Kong, Q.-F. Rong, A.-W. Shi, K.-J. Cao, Chin. Med. J. 124 (2011) 4310–4315.

[57] M.L. Balestrieri, C. Schiano, F. Felice, A. Casamassimi, A. Balestrieri, L. Milone, L. Servillo, C. Napoli, J. Biochem. 143 (2008) 179–186.

[58] L. Ling, S. Gu, Y. Cheng, Mol. Med. Rep. 15 (2017) 1188–1194.

[59] X.-H. Chen, Z.-G. Shi, H.-B. Lin, F. Wu, F. Zheng, C.-F. Wu, M.-W. Huang, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 6352–6359.

[60] H. Zhang, Z. Zhai, Y. Wang, J. Zhang, H. Wu, Y. Wang, C. Li, D. Li, L. Lu, X. Wang, J. Chang, Q. Hou, Z. Ju, D. Zhou, A. Meng, Free Radic. Biol. Med. 54 (2013) 40–50.

[61] Y.-J. Lv, Y. Yang, B.-D. Sui, C.-H. Hu, P. Zhao, L. Liao, J. Chen, L.-Q. Zhang, T.-T. Yang, S.-F. Zhang, Y. Jin, Theranostics 8 (2018) 2387–2406.

[62] H. Liu, S. Zhang, L. Zhao, Y. Zhang, Q. Li, X. Chai, Y. Zhang, Stem Cells Int. 2016 (2016) 2524092.

[63] I.I. Suvorova, A.R. Knyazeva, A.V. Petukhov, N.D. Aksenov, V.A. Pospelov, Cell Death Discov 5 (2019) 61.

[64] Y.-J. Wang, P. Zhao, B.-D. Sui, N. Liu, C.-H. Hu, J. Chen, C.-X. Zheng, A.-Q. Liu, K. Xuan, Y.-P. Pan, Y. Jin, Exp. Mol. Med. 50 (2018) 1–15.

[65] T.-S. Chen, C.-H. Kuo, C.H. Day, L.-F. Pan, R.-J. Chen, B.-C. Chen, V.V. Padma, Y.-M. Lin, C.-Y. Huang, J. Cell. Physiol. 234 (2019) 20443–20452.

[66] Z. Safaeinejad, M. Nabiuni, M. Peymani, K. Ghaedi, M.H. Nasr-Esfahani, H. Baharvand, Eur. J. Cell Biol. 96 (2017) 665–672.

[67] F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, S.-I. Tanuma, Curr. Aging Sci. 4 (2011) 1–7.

[68] J. Li, C.-X. Zhang, Y.-M. Liu, K.-L. Chen, G. Chen, Oncotarget 8 (2017) 65717–65729.

[69] K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer, D.A. Sinclair, Nature 425 (2003) 191–196.

[70] S.-C. Hsu, S.-M. Huang, A. Chen, C.-Y. Sun, S.-H. Lin, J.-S. Chen, S.-T. Liu, Y.-J. Hsu, Int. J. Biochem. Cell Biol. 53 (2014) 361–371.

[71] T.M. Bass, D. Weinkove, K. Houthoofd, D. Gems, L. Partridge, Mech. Ageing Dev. 128 (2007) 546–552.

[72] J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, D. Sinclair, Nature 430 (2004) 686–689.

[73] J. Miranda, M.P. Portillo, J.A. Madrid, N. Arias, M.T. Macarulla, M. Garaulet, Br. J. Nutr. 110 (2013) 1421–1428.

[74] F. Pifferi, A. Dal-Pan, S. Languille, F. Aujard, Oxid. Med. Cell. Longev. 2013 (2013) 187301.

[75] J.R. Leheste, G. Torres, Front. Mol. Neurosci. 8 (2015) 61.

[76] L. Sun, Y. Wang, Y. Song, X.-R. Cheng, S. Xia, M.R.T. Rahman, Y. Shi, G. Le, Biochem. Biophys. Res. Commun. 458 (2015) 86–91.