Wellmune® Baker’s Yeast Beta Glucan

COMMON NAME

Baker’s Yeast Beta Glucan | Beta Glucan | β-Glucan

TOP BENEFITS OF WELLMUNE®

  • Supports general immune health*
  • Supports healthy immune function after intense exercise*
  • Supports upper respiratory tract health*
  • Supports overall physical health*
  • Supports mental and emotional well-being*

WHAT IS WELLMUNE®?

Wellmune® is an award-winning proprietary baker’s yeast beta-glucan that has a unique ability to support immune health across many age and lifestyle groups. it has been used in over a dozen human clinical studies. In these studies, Wellmune has supported a healthy immune system under a variety of circumstances including after intense exercise and during periods of high stress. The active compound in Wellmune is beta 1,3/1,6 glucan. Beta-glucan is a type of dietary fiber found in yeast, some mushrooms, algae, and grains like barley, oats, and rice. But all beta-glucan is not identical—beta-glucan is a category made up of a diverse group of structurally similar, but not identical compounds. Wellmune is unique in being made from a proprietary strain of baker’s yeast, concentrating only beta 1,3/1,6 glucan, and having the largest number of clinical studies supporting its use for general immune health. Wellmune is considered to be an immunomodulator that supports trained immunity, meaning it challenges the immune system in ways that support it in being fitter and more efficient[1]

NEUROHACKER’S WELLMUNE® SOURCING

Wellmune® is backed by strong science; it has been used in more than a dozen human clinical studies. It has more than 50 patents and patent-pending applications and has won several awards for being an innovative ingredient.

Wellmune® is made from a proprietary strain of non-GMO Saccharomyces cerevisiae (i.e, baker’s yeast) and contains not less than 75% β-1,3/1,6 glucan.

Wellmune® is a registered trademark of Kerry Group.

Wellmune® has FDA GRAS status in the USA and has novel food approval in the EU and China. It is Kosher, Halal, non-GMO, gluten-free, and organic compliant.

WELLMUNE® DOSING PRINCIPLES AND RATIONALE

The clinically studied adult dose, and the adult dose recommended by Kerry group, the maker of Wellmune®, is 250 mg a day. We supply a dose of Wellmune that is the clinically studied amount in order to be consistent with human research.

WELLMUNE® KEY MECHANISMS

Immune function

  • Supports general immune health[2–9]
  • Supports post-exercise immunity[4,10–13]
  • Supports immune health during high stress[2]
  • Supports innate immunity[8,11,12]
  • Supports adaptive immunity[12]
  • Supports immune signaling[11,12]
  • Supports trained immunity[14–18]
  • Supports mucosal immunity[10,19–24] 
  • Supports secretory IgA responses[10,19]
  • Supports healthy dendritic cell function[25–28]
  • Supports healthy natural killer cell function[29–34]
  • Supports healthy macrophage function[11,12,35–41]
  • Supports healthy neutrophil function[11,20,39,40,42,43]
  • Supports healthy mast cell function[20]
  • Supports healthy T cell function[12]
  • Supports GI mucosal immunity[10]

Brain function and mood

  • Supports mental and physical energy[2,5,9]
  • Supports emotional well-being[2,5,9]

Gut microbiota

  • Supports a healthy gut microbiota[44–51]

REFERENCES

[1] E. De Marco Castro, P.C. Calder, H.M. Roche, Mol. Nutr. Food Res. (2020) e1901071.
[2] S.M. Talbott, J.A. Talbott, J. Am. Coll. Nutr. 31 (2012) 295–300.
[3] F. Meng, J. Nutr. Food Sci. 6 (2016).
[4] E. Mah, V.N. Kaden, K.M. Kelley, D.J. Liska, J. Diet. Suppl. 17 (2020) 200–210.
[5] S. Talbott, J. Talbott, J. Sports Sci. Med. 8 (2009) 509–515.
[6] R. Fuller, H. Butt, P.S. Noakes, J. Kenyon, T.S. Yam, P.C. Calder, Nutrition 28 (2012) 665–669.
[7] S. Feldman, H.I. Schwartz, D.S. Kalman, A. Mayers, H.M. Kohrman, R. Clemens, D.R. Krieger, J. Appl. Res. 9 (2009) 30–43.
[8] R. Fuller, M.V. Moore, G. Lewith, B.L. Stuart, R.V. Ormiston, H.L. Fisk, P.S. Noakes, P.C. Calder, Nutrition 39-40 (2017) 30–35.
[9] S.M. Talbott, J.A. Talbott, T.L. Talbott, E. Dingler, Food Sci Nutr 1 (2013) 90–101.
[10] B.K. McFarlin, K.C. Carpenter, T. Davidson, M.A. McFarlin, J. Diet. Suppl. 10 (2013) 171–183.
[11] K.C. Carpenter, W.L. Breslin, T. Davidson, A. Adams, B.K. McFarlin, Br. J. Nutr. 109 (2013) 478–486.
[12] B.K. McFarlin, A.S. Venable, K.C. Carpenter, A.L. Henning, S. Ogenstad, Front. Physiol. 8 (2017) 786.
[13] E. Mah, V.N. Kaden, K.M. Kelley, D.J. Liska, J. Med. Food 23 (2020) 416–419.
[14] P. Garcia-Valtanen, R.M. Guzman-Genuino, D.L. Williams, J.D. Hayball, K.R. Diener, Immunol. Cell Biol. 95 (2017) 601–610.
[15] S. Walachowski, G. Tabouret, M. Fabre, G. Foucras, Front. Immunol. 8 (2017) 1089.
[16] M. Librán-Pérez, M.M. Costa, A. Figueras, B. Novoa, Fish Shellfish Immunol. 82 (2018) 173–182.
[17] J.C. Dos Santos, A.M. Barroso de Figueiredo, M.V. Teodoro Silva, B. Cirovic, L.C.J. de Bree, M.S.M.A. Damen, S.J.C.F.M. Moorlag, R.S. Gomes, M.M. Helsen, M. Oosting, S.T. Keating, A. Schlitzer, M.G. Netea, F. Ribeiro-Dias, L.A.B. Joosten, Cell Rep. 28 (2019) 2659–2672.e6.
[18] S.J.C.F.M. Moorlag, N. Khan, B. Novakovic, E. Kaufmann, T. Jansen, R. van Crevel, M. Divangahi, M.G. Netea, Cell Rep. 31 (2020) 107634.
[19] G. Lehne, B. Haneberg, P. Gaustad, P.W. Johansen, H. Preus, T.G. Abrahamsen, Clin. Exp. Immunol. 143 (2006) 65–69.
[20] J.-P. Ganda Mall, M. Casado-Bedmar, M.E. Winberg, R.J. Brummer, I. Schoultz, Å.V. Keita, Inflamm. Bowel Dis. 24 (2017) 166–178.
[21] C. Tsukada, H. Yokoyama, C. Miyaji, Y. Ishimoto, H. Kawamura, T. Abo, Cell. Immunol. 221 (2003) 1–5.
[22] X. Jin, M. Zhang, Y.-F. Yang, Vet. Res. Commun. 43 (2019) 77–89.
[23] M. Zhang, X. Jin, Y.-F. Yang, Cell. Signal. 53 (2019) 304–315.
[24] M. van der Marel, M. Adamek, S.F. Gonzalez, P. Frost, J.H.W.M. Rombout, G.F. Wiegertjes, H.F.J. Savelkoul, D. Steinhagen, Fish Shellfish Immunol. 32 (2012) 494–501.
[25] S.H. Albeituni, J. Yan, Anticancer Agents Med. Chem. 13 (2013) 689–698.
[26] U. Harnack, K. Eckert, I. Fichtner, G. Pecher, Int. Immunopharmacol. 9 (2009) 1298–1303.
[27] M. Driscoll, R. Hansen, C. Ding, D.E. Cramer, J. Yan, Cancer Biol. Ther. 8 (2009) 218–225.
[28] J. Ding, T. Feng, Y. Ning, W. Li, Q. Wu, K. Qian, Y. Wang, C. Qi, Hum. Immunol. 76 (2015) 146–154.
[29] V. Vetvicka, J. Vetvickova, Anticancer Res. 35 (2015) 5287–5292.
[30] Y. Kimura, M. Sumiyoshi, T. Suzuki, T. Suzuki, M. Sakanaka, J. Pharm. Pharmacol. 59 (2007) 1137–1144.
[31] Y. Kimura, M. Sumiyoshi, T. Suzuki, M. Sakanaka, Anticancer Res. 26 (2006) 4131–4141.
[32] A.C. Pelizon, R. Kaneno, A.M.V.C. Soares, D.A. Meira, A. Sartori, Physiol. Res. 54 (2005) 557–564.
[33] Y.-H. Gu, Y. Takagi, T. Nakamura, T. Hasegawa, I. Suzuki, M. Oshima, H. Tawaraya, Y. Niwano, J. Med. Food 8 (2005) 154–158.
[34] X. Duan, M. Ackerly, E. Vivier, P. Anderson, Cell. Immunol. 157 (1994) 393–402.
[35] X. Li, H. Luo, Y. Ye, X. Chen, Y. Zou, J. Duan, D. Xiang, Int. J. Oncol. 54 (2019) 271–282.
[36] V. Vetvicka, J. Vetvickova, J. Immunotoxicol. 6 (2009) 30–35.
[37] H.S. Goodridge, C.N. Reyes, C.A. Becker, T.R. Katsumoto, J. Ma, A.J. Wolf, N. Bose, A.S.H. Chan, A.S. Magee, M.E. Danielson, A. Weiss, J.P. Vasilakos, D.M. Underhill, Nature 472 (2011) 471–475.
[38] T. Breivik, P.K. Opstad, R. Engstad, G. Gundersen, P. Gjermo, H. Preus, J. Clin. Periodontol. 32 (2005) 347–352.
[39] J.J. Volman, J.D. Ramakers, J. Plat, Physiol. Behav. 94 (2008) 276–284.
[40] B. Li, D.J. Allendorf, R. Hansen, J. Marroquin, C. Ding, D.E. Cramer, J. Yan, J. Immunol. 177 (2006) 1661–1669.
[41] G.D. Brown, P.R. Taylor, D.M. Reid, J.A. Willment, D.L. Williams, L. Martinez-Pomares, S.Y.C. Wong, S. Gordon, J. Exp. Med. 196 (2002) 407–412.
[42] G.D. Ross, J.A. Cain, B.L. Myones, S.L. Newman, P.J. Lachmann, Complement 4 (1987) 61–74.
[43] L.M. Lavigne, J.E. Albina, J.S. Reichner, J. Immunol. 177 (2006) 8667–8675.
[44] M. Jayachandran, J. Chen, S.S.M. Chung, B. Xu, J. Nutr. Biochem. 61 (2018) 101–110.
[45] M. Xu, X. Mo, H. Huang, X. Chen, H. Liu, Z. Peng, L. Chen, S. Rong, W. Yang, S. Xu, L. Liu, Int. J. Biol. Macromol. 161 (2020) 258–270.
[46] R. Gudi, J. Suber, R. Brown, B.M. Johnson, C. Vasu, J. Nutr. 150 (2020) 1291–1302.
[47] I.S. Kim, S.H. Lee, Y.M. Kwon, B. Adhikari, J.A. Kim, D.Y. Yu, G.I. Kim, J.M. Lim, S.H. Kim, S.S. Lee, Y.S. Moon, I.S. Choi, K.K. Cho, J. Microbiol. Biotechnol. 29 (2019) 1693–1706.
[48] R. Gudi, N. Perez, B.M. Johnson, M.H. Sofi, R. Brown, S. Quan, S. Karumuthil-Melethil, C. Vasu, Immunology 157 (2019) 70–85.
[49] Y. Cao, Y. Sun, S. Zou, B. Duan, M. Sun, X. Xu, J. Agric. Food Chem. 66 (2018) 621–629.
[50] I. Pinheiro, L. Robinson, A. Verhelst, M. Marzorati, B. Winkens, P. Van den Abbeele, S. Possemiers, BMC Complement. Altern. Med. 17 (2017) 441.
[51] Y. Cao, S. Zou, H. Xu, M. Li, Z. Tong, M. Xu, X. Xu, Mol. Nutr. Food Res. 60 (2016) 2678–2690.