Wild Blueberry Fruit Extract

WILD BLUEBERRY COMMON NAME

Lowbush Blueberry

TOP BENEFITS OF WILD BLUEBERRY 

  • Supports cognitive function*
  • Supports vision*
  • Supports antioxidant defenses*
  • Supports cardiometabolic health*

WHAT IS WILD BLUEBERRY FRUIT? 

Blueberries are the fruit of a group of plant species belonging to the genus Vaccinium, section Cyanococcus. Blueberries contain anthocyanins that give the characteristic blue-purple color. They also contain other polyphenols and various phytochemicals. Commercial blueberries include wild (‘lowbush’) and cultivated (‘highbush’) varieties. Wild blueberries (Vaccinium angustifolium) are native to North American and are both smaller and have more intense color than the cultivated highbush blueberries. They also have higher anthocyanin and polyphenols content.[1,2] Most wild blueberries are harvested from native patches in Quebec, Nova Scotia, and Maine. Wild blueberry supplementation has primarily been studied for supporting cognitive function and brain health.[3,4]

NEUROHACKER’S WILD BLUEBERRY FRUIT SOURCING

North American wild blueberry fruits are sourced from FutureCeuticals, a leader in growing, researching, and creating unique fruit and vegetable powders and extracts. 

FutureCeuticals HiActives® North American Wild Blueberry Powder is standardized to contain no less than 1.5% Anthocyanins. 

Grown in North America (USA and Canada)

Wild Blueberry Powder is GRAS, non-GMO, gluten-free, and vegan.

WILD BLUEBERRY FRUIT DOSING PRINCIPLES AND RATIONALE  

Wild blueberries are safely consumed as a food and have been clinically studied in humans at a variety of doses, ranging from as low as 100 mg/day to multiple grams. In general, standardized wild blueberry extracts have been dosed in lower amounts than non-standardized extracts.

WILD BLUEBERRY FRUIT KEY MECHANISMS

Cognitive function

  • Supports memory in adults [3–5]
  • Supports memory and cognitive performance in children [6–9]
  • Supports mood [10]
  • Supports task-related brain activation [11]
  • Supports memory (animal studies) [12–15]
  • Protects against cognitive impairment [16–18]

Brain function

  • Supports dopaminergic neurotransmission [19–21]
  • Upregulates hippocampal BDNF levels [14,15,22,23]
  • Upregulates hippocampal IGF-1 levels [16]
  • Supports long-term potentiation (LTP) [24]

Neuroprotection

  • Protects the brain from neurotoxic agents [16]
  • Regulates cytokine signaling in the brain [13,16,25]
  • Protects against age-related neurological, motor, and cognitive deficits [21,26,27]

Cerebrovascular health

  • Supports brain perfusion [11] 

Antioxidant defenses

  • Increases antioxidant enzymes in the brain (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [28–30]
  • Replenishes glutathione (GSH) [31]
  • Downregulates NADPH oxidase activity [32]
  • Downregulates reactive oxygen species (ROS) and oxidative stress [28,33–35]

Cardiometabolic health

  • Supports cardiac function [36]
  • Supports vascular function [37]
  • Protects cardiac tissue from ischemic damage [38]
  • Upregulates endothelial nitric oxide (eNOS) activity [31]
  • Supports healthy blood pressure [3,28,39–41]
  • Downregulates LDL oxidation [35,39]
  • Supports healthy blood glucose levels [42]

Vision

  • Protects retinal photoreceptor cells from blue LED light-induced damage [43,44]
  • Protects against screen-induced ocular fatigue [45,46]

Exercise performance

  • Supports exercise performance [47]
  • Supports recovery from muscle damage [48] 

Healthy aging and longevity

  • Upregulates nuclear factor erythroid-2 related factor-2 (Nrf2) [29,30]
  • Upregulates DNA repair enzymes [29]
  • Protects against DNA damage [49–51]
  • Extends lifespan (Drosophila melanogaster) [52]

 

References

[1]K.L. Wolfe, X. Kang, X. He, M. Dong, Q. Zhang, R.H. Liu, J. Agric. Food Chem. 56 (2008) 8418–8426.
[2]G. Borges, A. Degeneve, W. Mullen, A. Crozier, J. Agric. Food Chem. 58 (2010) 3901–3909.
[3]A.R. Whyte, N. Cheng, E. Fromentin, C.M. Williams, Nutrients 10 (2018).
[4]R. Krikorian, M.D. Shidler, T.A. Nash, W. Kalt, M.R. Vinqvist-Tymchuk, B. Shukitt-Hale, J.A. Joseph, J. Agric. Food Chem. 58 (2010) 3996–4000.
[5]R.K. McNamara, W. Kalt, M.D. Shidler, J. McDonald, S.S. Summer, A.L. Stein, A.N. Stover, R. Krikorian, Neurobiol. Aging 64 (2018) 147–156.
[6]A.R. Whyte, C.M. Williams, Nutrition 31 (2015) 531–534.
[7]A.R. Whyte, G. Schafer, C.M. Williams, Food Funct. 8 (2017) 4129–4138.
[8]K.L. Barfoot, G. May, D.J. Lamport, J. Ricketts, P.M. Riddell, C.M. Williams, Eur. J. Nutr. (2018).
[9]A.R. Whyte, G. Schafer, C.M. Williams, Eur. J. Nutr. 55 (2016) 2151–2162.
[10]S. Khalid, K.L. Barfoot, G. May, D.J. Lamport, S.A. Reynolds, C.M. Williams, Nutrients 9 (2017).
[11]J.L. Bowtell, Z. Aboo-Bakkar, M.E. Conway, A.-L.R. Adlam, J. Fulford, Appl. Physiol. Nutr. Metab. 42 (2017) 773–779.
[12]C. Andres-Lacueva, B. Shukitt-Hale, R.L. Galli, O. Jauregui, R.M. Lamuela-Raventos, J.A. Joseph, Nutr. Neurosci. 8 (2005) 111–120.
[13]P. Goyarzu, D.H. Malin, F.C. Lau, G. Taglialatela, W.D. Moon, R. Jennings, E. Moy, D. Moy, S. Lippold, B. Shukitt-Hale, J.A. Joseph, Nutr. Neurosci. 7 (2004) 75–83.
[14]C. Rendeiro, D. Vauzour, M. Rattray, P. Waffo-Téguo, J.M. Mérillon, L.T. Butler, C.M. Williams, J.P.E. Spencer, PLoS One 8 (2013) e63535.
[15]C.M. Williams, M.A. El Mohsen, D. Vauzour, C. Rendeiro, L.T. Butler, J.A. Ellis, M. Whiteman, J.P.E. Spencer, Free Radic. Biol. Med. 45 (2008) 295–305.
[16]B. Shukitt-Hale, F.C. Lau, A.N. Carey, R.L. Galli, E.L. Spangler, D.K. Ingram, J.A. Joseph, Nutr. Neurosci. 11 (2008) 172–182.
[17]Q. Guo, Y.-N. Kim, B.-H. Lee, Nutr. Res. Pract. 11 (2017) 25–32.
[18]I. Traupe, M. Giacalone, J. Agrimi, M. Baroncini, A. Pomé, D. Fabiani, S. Danti, M.R. Timpano Sportiello, F. Di Sacco, V. Lionetti, F. Giunta, F. Forfori, Minerva Anestesiol. 84 (2018) 1352–1360.
[19]I. Strömberg, C. Gemma, J. Vila, P.C. Bickford, Exp. Neurol. 196 (2005) 298–307.
[20]S.O. McGuire, C.E. Sortwell, B. Shukitt-Hale, J.A. Joseph, M.J. Hejna, T.J. Collier, Nutr. Neurosci. 9 (2006) 251–258.
[21]K.A. Youdim, B. Shukitt-Hale, A. Martin, H. Wang, N. Denisova, P.C. Bickford, J.A. Joseph, Nutr. Neurosci. 3 (2000) 383–397.
[22]C. Rendeiro, D. Vauzour, R.J. Kean, L.T. Butler, M. Rattray, J.P.E. Spencer, C.M. Williams, Psychopharmacology 223 (2012) 319–330.
[23]A.N. Carey, K.R. Gildawie, A. Rovnak, N. Thangthaeng, D.R. Fisher, B. Shukitt-Hale, Nutr. Neurosci. 22 (2019) 253–263.
[24]S.J. Coultrap, P.C. Bickford, M.D. Browning, Age 30 (2008) 263–272.
[25]F.C. Lau, D.F. Bielinski, J.A. Joseph, J. Neurosci. Res. 85 (2007) 1010–1017.
[26]J.A. Joseph, B. Shukitt-Hale, N.A. Denisova, D. Bielinski, A. Martin, J.J. McEwen, P.C. Bickford, J. Neurosci. 19 (1999) 8114–8121.
[27]B. Shukitt-Hale, R.L. Galli, V. Meterko, A. Carey, D.F. Bielinski, T. McGhie, J.A. Joseph, Age 27 (2005) 49–57.
[28]C.M. Elks, S.D. Reed, N. Mariappan, B. Shukitt-Hale, J.A. Joseph, D.K. Ingram, J. Francis, PLoS One 6 (2011) e24028.
[29]K. Kavitha, P. Thiyagarajan, J. Rathna Nandhini, R. Mishra, S. Nagini, Biochimie 95 (2013) 1629–1639.
[30]Y.-P. Wang, M.-L. Cheng, B.-F. Zhang, M. Mu, J. Wu, World J. Gastroenterol. 16 (2010) 2657–2663.
[31]Y.E. Lopera, J. Fantinelli, L.F. González Arbeláez, B. Rojano, J.L. Ríos, G. Schinella, S. Mosca, Evid. Based. Complement. Alternat. Med. 2013 (2013) 516727.
[32]S.J. Gustafson, K.L. Dunlap, C.M. McGill, T.B. Kuhn, Oxid. Med. Cell. Longev. 2012 (2012) 768101.
[33]H. Wang, G. Cao, R.L. Prior, J. Agric. Food Chem. 45 (1997) 304–309.
[34]S.M. Bornsek, L. Ziberna, T. Polak, A. Vanzo, N.P. Ulrih, V. Abram, F. Tramer, S. Passamonti, Food Chem. 134 (2012) 1878–1884.
[35]B.C. Blacker, S.M. Snyder, D.L. Eggett, T.L. Parker, Br. J. Nutr. 109 (2013) 1670–1677.
[36]A. Cassidy, K.J. Mukamal, L. Liu, M. Franz, A.H. Eliassen, E.B. Rimm, Circulation 127 (2013) 188–196.
[37]A. Rodriguez-Mateos, G. Istas, L. Boschek, R.P. Feliciano, C.E. Mills, C. Boby, S. Gomez-Alonso, D. Milenkovic, C. Heiss, J. Gerontol. A Biol. Sci. Med. Sci. 74 (2019) 967–976.
[38]I. Ahmet, E. Spangler, B. Shukitt-Hale, M. Juhaszova, S.J. Sollott, J.A. Joseph, D.K. Ingram, M. Talan, PLoS One 4 (2009) e5954.
[39]A. Basu, M. Du, M.J. Leyva, K. Sanchez, N.M. Betts, M. Wu, C.E. Aston, T.J. Lyons, J. Nutr. 140 (2010) 1582–1587.
[40]S.A. Johnson, A. Figueroa, N. Navaei, A. Wong, R. Kalfon, L.T. Ormsbee, R.G. Feresin, M.L. Elam, S. Hooshmand, M.E. Payton, B.H. Arjmandi, J. Acad. Nutr. Diet. 115 (2015) 369–377.
[41]K.S. Shaughnessy, I.A. Boswall, A.P. Scanlan, K.T. Gottschall-Pass, M.I. Sweeney, Nutr. Res. 29 (2009) 130–138.
[42]L. Bell, D.J. Lamport, L.T. Butler, C.M. Williams, Food Funct. 8 (2017) 3104–3110.
[43]E. Ooe, Y. Kuse, T. Yako, T. Sogon, S. Nakamura, H. Hara, M. Shimazawa, Mol. Vis. 24 (2018) 621–632.
[44]B.-L. Lee, J.-H. Kang, H.-M. Kim, S.-H. Jeong, D.-S. Jang, Y.-P. Jang, S.-Y. Choung, Nutr. Res. 36 (2016) 1402–1414.
[45]C.Y. Park, N. Gu, C.-Y. Lim, J.-H. Oh, M. Chang, M. Kim, M.-Y. Rhee, BMC Complement. Altern. Med. 16 (2016) 296.
[46]Y. Ozawa, M. Kawashima, S. Inoue, E. Inagaki, A. Suzuki, E. Ooe, S. Kobayashi, K. Tsubota, J. Nutr. Health Aging 19 (2015) 548–554.
[47]C.H. Park, Y.S. Kwak, H.K. Seo, H.Y. Kim, Iran. J. Public Health 47 (2018) 27–32.
[48]Y. McLeay, M.J. Barnes, T. Mundel, S.M. Hurst, R.D. Hurst, S.R. Stannard, J. Int. Soc. Sports Nutr. 9 (2012) 19.
[49]P. Riso, D. Klimis-Zacas, C. Del Bo’, D. Martini, J. Campolo, S. Vendrame, P. Møller, S. Loft, R. De Maria, M. Porrini, Eur. J. Nutr. 52 (2013) 949–961.
[50]L.C. Wilms, A.W. Boots, V.C.J. de Boer, L.M. Maas, D.M.F.A. Pachen, R.W.H. Gottschalk, H.B. Ketelslegers, R.W.L. Godschalk, G.R.M.M. Haenen, F.J. van Schooten, J.C.S. Kleinjans, Carcinogenesis 28 (2007) 1800–1806.
[51]C. Del Bó, P. Riso, J. Campolo, P. Møller, S. Loft, D. Klimis-Zacas, A. Brambilla, A. Rizzolo, M. Porrini, Nutr. Res. 33 (2013) 220–227.
[52]C. Peng, Y. Zuo, K.M. Kwan, Y. Liang, K.Y. Ma, H.Y.E. Chan, Y. Huang, H. Yu, Z.-Y. Chen, Exp. Gerontol. 47 (2012) 170–178.