Zinc Gluconate


Zinc gluconate


  • Supports general immune health*
  • Supports upper respiratory health*
  • Supports eye health*


Zinc (Zn) has been recognized as an essential trace mineral since 1963; it is used in over 300 enzymes and a large number of transcription factors (i.e., genes that regulate other genes) [1]. There are roughly 2–4 grams of zinc distributed throughout the human body in tissues including the adrenal glands, brain, eyes, muscle, pancreas, bones, kidney, and liver [2]. Zinc plays roles in a variety of functions required for health, including antioxidant defenses, brain function, metabolic function, and men’s and women’s health functions [1]. Zinc also plays an important role in immune function—it supports cells of both innate and adaptive immunity and is needed for mucosal immunity, immune tolerance, and immune communication [3,4]. Inadequate intake of zinc is fairly common [5]. Even mild to moderate zinc inadequacy can impair healthy immune cell function [4,6,7]. Good food sources of zinc include oysters, fish, poultry, meat, wheat germ, molasses, legumes, nuts, and seeds. Zinc may also be fortified into cereal grains in developed countries [5]. Circumstances associated with a higher risk of poor zinc status include intense exercise, a vegetarian diet, high alcohol intake, older age, and gastrointestinal disturbance. A variety of zinc compounds are used as dietary supplements. Zinc gluconate is considered to be one of the better-absorbed forms of zinc and has been used extensively in studies for general immune health. It is a zinc salt of gluconic acid composed of two gluconic acid molecules for each zinc cation (Zn2+).


Zinc gluconate is a bioavailable form of zinc that has been used in a number of human clinical studies. It has been regularly used in human studies for immune support.

Zinc gluconate is GRAS, non-GMO, gluten-free, and vegan.


We chose zinc gluconate because it is one of the better-absorbed forms of zinc—it can increase serum and erythrocytic stores of Zinc in healthy persons [8]—and is the most studied form of zinc for immune support. To ensure against inadequacy, in the United States the recommended dietary allowance of zinc for adults is currently set at 8 mg per day for women, and 11 mg per day for men—11 mg is considered 100% of the daily value (DV) for supplement labeling. This represents a decrease from the prior DV of 15 mg per day. Because the 15 mg DV for zinc was in place for many years, it's common to find studies that supplemented 15 grams (or more) of zinc. Zinc follows hormetic principles (see Neurohacker Dosing Principles). The key point is that zinc is not a “more is better” trace mineral—the tolerable upper limit for adults has been set at 40 mg per day. When determining the dose of zinc to include in a product, our goal is to ensure we’ve supplied an amount that would be consistent with the product’s goals while being within the hormetic range.

Note: Zinc gluconate is 14.3% elemental zinc by weight, so 100 mg of zinc gluconate provides about 14 mg of zinc. On Neurohacker Collective labels, the mg amount listed refers to the dosage of zinc, not the amount of zinc gluconate.


Immune function

  • Supports general immune health [9–16]
  • Supports innate immunity [17–20]
  • Supports adaptive immunity [10,11,21–23]
  • Supports mucosal immunity [24–26]    
  • Supports immune tolerance [27–37]
  • Supports immune signaling [38–43]
  • Supports healthy dendritic cell function [37,44]
  • Supports healthy neutrophil function [17]
  • Supports healthy macrophage function [3,18,45]
  • Supports healthy T cell function [7,10,11,21–23,46,47]
  • Supports healthy NK cell function [19,20,48,49] 
  • Supports healthy B cell function [10] 

Healthy aging

  • Supports Nrf2 [50–62]
  • Supports redox homeostasis [63–65]
  • Supports antioxidant defenses [63–66]

Brain function

  • Supports a balanced mood [67–71]
  • Supports cognitive function [72,73]
  • Supports brain-derived neurotrophic factor (BDNF) [74–76]
  • Supports sleep [77–79]
  • Supports eye health [80–82]

Complementary ingredients

  • Selenium in supporting immunity [83,84]
  • In human research studies, it is not uncommon for small amounts of copper to be included when dosing zinc in amounts in excess of the tolerable upper limits. But in human studies where zinc has been supplemented in amounts close to the daily value levels, it is unusual to find copper supplemented in combination with zinc.
  • Large amounts of supplemental iron (greater than 25 mg) might decrease zinc absorption [85]


[1] C.T. Chasapis, A.C. Loutsidou, C.A. Spiliopoulou, M.E. Stefanidou, Arch. Toxicol. 86 (2012) 521–534.
[2] L. Rink, P. Gabriel, Proc. Nutr. Soc. 59 (2000) 541–552.
[3] A.H. Shankar, A.S. Prasad, Am. J. Clin. Nutr. 68 (1998) 447S–463S.
[4] E.S. Wintergerst, S. Maggini, D.H. Hornig, Ann. Nutr. Metab. 51 (2007) 301–323.
[5] C.A. Reider, R.-Y. Chung, P.P. Devarshi, R.W. Grant, S. Hazels Mitmesser, Nutrients 12 (2020).
[6] A.S. Prasad, J. Infect. Dis. 182 Suppl 1 (2000) S62–8.
[7] F.W. Beck, A.S. Prasad, J. Kaplan, J.T. Fitzgerald, G.J. Brewer, Am. J. Physiol. 272 (1997) E1002–7.
[8] S.A. Barrie, J.V. Wright, J.E. Pizzorno, E. Kutter, P.C. Barron, Agents Actions 21 (1987) 223–228.
[9] D.V. Veverka, C. Wilson, M.A. Martinez, R. Wenger, A. Tamosuinas, Complement. Ther. Clin. Pract. 15 (2009) 91–95.
[10] J. Duchateau, G. Delepesse, R. Vrijens, H. Collet, Am. J. Med. 70 (1981) 1001–1004.
[11] S. Sazawal, S. Jalla, S. Mazumder, A. Sinha, R.E. Black, M.K. Bhan, Indian Pediatr. 34 (1997) 589–597.
[12] N.S. Martinez-Estevez, A.N. Alvarez-Guevara, C.E. Rodriguez-Martinez, Allergol. Immunopathol. 44 (2016) 368–375.
[13] R. Aggarwal, J. Sentz, M.A. Miller, Pediatrics 119 (2007) 1120–1130.
[14] U.H. Shah, A.K. Abu-Shaheen, M.A. Malik, S. Alam, M. Riaz, M.A. Al-Tannir, Clin. Nutr. 32 (2013) 193–199.
[15] A.S. Prasad, F.W.J. Beck, B. Bao, J.T. Fitzgerald, D.C. Snell, J.D. Steinberg, L.J. Cardozo, Am. J. Clin. Nutr. 85 (2007) 837–844.
[16] S. Sazawal, R.E. Black, S. Jalla, S. Mazumdar, A. Sinha, M.K. Bhan, Pediatrics 102 (1998) 1–5.
[17] A. Peretz, B. Cantinieaux, J. Nève, V. Siderova, P. Fondu, J. Trace Elem. Electrolytes Health Dis. 8 (1994) 189–194.
[18] J.E. Nowak, K. Harmon, C.C. Caldwell, H.R. Wong, Pediatr. Crit. Care Med. 13 (2012) e323–9.
[19] Z. Pang, Y.M. Wang, J. Zheng, Asia Pac. J. Clin. Nutr. 1 (1992) 95–100.
[20] C.H.D. Metz, A.K. Schröder, S. Overbeck, L. Kahmann, B. Plümäkers, L. Rink, Nutrition 23 (2007) 157–163.
[21] G. Mathé, J.L. Misset, M. Gil-Delgado, M. Musset, P. Reizenstein, C. Canon, Biomed. Pharmacother. 40 (1986) 383–385.
[22] J.B. Barnett, M.C. Dao, D.H. Hamer, R. Kandel, G. Brandeis, D. Wu, G.E. Dallal, P.F. Jacques, R. Schreiber, E. Kong, S.N. Meydani, Am. J. Clin. Nutr. 103 (2016) 942–951.
[23] C. Franceschi, M. Chiricolo, F. Licastro, M. Zannotti, M. Masi, E. Mocchegiani, N. Fabris, J. Ment. Defic. Res. 32 ( Pt 3) (1988) 169–181.
[24] C. Poiraud, G. Quereux, A.-C. Knol, T. Zuliani, R. Allix, A. Khammari, B. Dreno, Eur. J. Dermatol. 22 (2012) 634–639.
[25] W. Zhong, X. Wei, L. Hao, T.-D. Lin, R. Yue, X. Sun, W. Guo, H. Dong, T. Li, A.R. Ahmadi, Z. Sun, Q. Zhang, J. Zhao, Z. Zhou, Hepatology 71 (2020) 1575–1591.
[26] P. Kelly, R. Feakins, P. Domizio, J. Murphy, C. Bevins, J. Wilson, G. McPhail, R. Poulsom, W. Dhaliwal, Clin. Exp. Immunol. 135 (2004) 303–309.
[27] M. Maywald, F. Wang, L. Rink, J. Trace Elem. Med. Biol. 50 (2018) 482–488.
[28] E. Rosenkranz, R.-D. Hilgers, P. Uciechowski, A. Petersen, B. Plümäkers, L. Rink, Eur. J. Nutr. 56 (2017) 557–567.
[29] S.-Y. Lee, S.H. Lee, J. Jhun, H.-B. Seo, K.A. Jung, C.W. Yang, S.-H. Park, M.-L. Cho, J. Med. Food 21 (2018) 39–46.
[30] M. Maywald, L. Rink, Eur. J. Nutr. 56 (2017) 1859–1869.
[31] E. Rosenkranz, M. Maywald, R.-D. Hilgers, A. Brieger, T. Clarner, M. Kipp, B. Plümäkers, S. Meyer, T. Schwerdtle, L. Rink, J. Nutr. Biochem. 29 (2016) 116–123.
[32] D. Stoye, C. Schubert, A. Goihl, K. Guttek, A. Reinhold, S. Brocke, K. Grüngreiff, D. Reinhold, Biometals 25 (2012) 529–539.
[33] S. Dünkelberg, M. Maywald, A.K. Schmitt, T. Schwerdtle, S. Meyer, L. Rink, Mol. Nutr. Food Res. 64 (2020) e1900245.
[34] M. Maywald, F. Wang, L. Rink, Int. J. Mol. Sci. 19 (2018).
[35] L. Kulik, M. Maywald, V. Kloubert, I. Wessels, L. Rink, J. Nutr. Biochem. 63 (2019) 11–18.
[36] Y.L. Tsai, W.-S. Ko, J.-L. Hsiao, H.-H. Pan, Y.-L. Chiou, Clin. Respir. J. 12 (2018) 563–571.
[37] M.M. George, K. Subramanian Vignesh, J.A. Landero Figueroa, J.A. Caruso, G.S. Deepe Jr, J. Immunol. 197 (2016) 1864–1876.
[38] J. Kim, J. Ahn, Biol. Trace Elem. Res. 157 (2014) 101–106.
[39] I. Abdulhamid, F.W.J. Beck, S. Millard, X. Chen, A. Prasad, Pediatr. Pulmonol. 43 (2008) 281–287.
[40] M.S.B. de Moura, N.R.M. Soares, S.É. de L. Barros, F.A. de Pinho, T.M.C. Silva, D.C. Bráz, E.C. Vieira, M.M. Lima, J.M.L. Parente, D. do N. Marreiro, A.S. da Silva, N. do N. Nogueira, Biometals 33 (2020) 15–27.
[41] S.S. Yalçın, D. Engür-Karasimav, D. Alehan, K. Yurdakök, S. Ozkutlu, T. Coşkun, J. Trace Elem. Med. Biol. 25 (2011) 85–90.
[42] C.I. Morgan, J.R. Ledford, P. Zhou, K. Page, J. Inflamm. 8 (2011) 36.
[43] B. Bao, A.S. Prasad, F.W.J. Beck, J.T. Fitzgerald, D. Snell, G.W. Bao, T. Singh, L.J. Cardozo, Am. J. Clin. Nutr. 91 (2010) 1634–1641.
[44] A.S. Prasad, J. Am. Coll. Nutr. 28 (2009) 257–265.
[45] M.D. Lastra, R. Pastelin, A. Camacho, B. Monroy, A.E. Aguilar, J. Trace Elem. Med. Biol. 15 (2001) 5–10.
[46] L. Iovino, F. Mazziotta, G. Carulli, F. Guerrini, R. Morganti, V. Mazzotti, F. Maggi, L. Macera, E. Orciuolo, G. Buda, E. Benedetti, F. Caracciolo, S. Galimberti, M. Pistello, M. Petrini, Leuk. Res. 70 (2018) 20–24.
[47] A. Sheikh, S. Shamsuzzaman, S.M. Ahmad, D. Nasrin, S. Nahar, M.M. Alam, A. Al Tarique, Y.A. Begum, S.S. Qadri, M.I. Chowdhury, A. Saha, C.P. Larson, F. Qadri, J. Nutr. 140 (2010) 1049–1056.
[48] E. Mariani, S. Neri, L. Cattini, E. Mocchegiani, M. Malavolta, G.V. Dedoussis, S. Kanoni, L. Rink, J. Jajte, A. Facchini, Exp. Gerontol. 43 (2008) 462–471.
[49] W. Mei, Z.M. Dong, B.L. Liao, H.B. Xu, Biol. Trace Elem. Res. 28 (1991) 11–19.
[50] Z. Kaufman, G.A. Salvador, X. Liu, P.I. Oteiza, Free Radic. Biol. Med. 155 (2020) 1–9.
[51] Y. Wang, H. Zhao, Y. Liu, X. Nie, M. Xing, Fish Shellfish Immunol. 104 (2020) 383–390.
[52]     X. Lu, Q. Zhang, L. Xu, X. Lin, J. Fu, X. Wang, Y. Liu, Y. Lin, B. Li, R. Wang, L. Liu, X. Mi, H. Wei, Y. Tan, Y. Fang, Am. J. Physiol. Cell Physiol. 318 (2020) C640–C648.
[53] L. Gao, Y. Fan, X. Zhang, L. Yang, W. Huang, T. Hang, M. Li, S. Du, J. Ma, Mol. Med. Rep. 20 (2019) 655–663.
[54] T.-C. Huang, W.-T. Chang, Y.-C. Hu, B.-S. Hsieh, H.-L. Cheng, J.-H. Yen, P.-R. Chiu, K.-L. Chang, Nutrients 10 (2018).
[55] N.N. Omar, R.F. Tash, Pharmacol. Biochem. Behav. 160 (2017) 30–38.
[56] G.R. Romualdo, R.L. Goto, A.A. Henrique Fernandes, B. Cogliati, L.F. Barbisan, Food Chem. Toxicol. 96 (2016) 280–289.
[57] J. Chen, S. Wang, M. Luo, Z. Zhang, X. Dai, M. Kong, L. Cai, Y. Wang, B. Shi, Y. Tan, Toxicol. Sci. 153 (2016) 124–136.
[58] K.P. Maremanda, S. Khan, G. Jena, Biochem. Biophys. Res. Commun. 445 (2014) 591–596.
[59] X. Miao, Y. Wang, J. Sun, W. Sun, Y. Tan, L. Cai, Y. Zheng, G. Su, Q. Liu, Y. Wang, Cardiovasc. Diabetol. 12 (2013) 54.
[60] A.J. Mehta, P.C. Joshi, X. Fan, L.A.S. Brown, J.D. Ritzenthaler, J. Roman, D.M. Guidot, Alcohol. Clin. Exp. Res. 35 (2011) 1519–1528.
[61] M.M. Cortese, C.V. Suschek, W. Wetzel, K.-D. Kröncke, V. Kolb-Bachofen, Free Radic. Biol. Med. 44 (2008) 2002–2012.
[62] M. Schwarz, K. Lossow, J.F. Kopp, T. Schwerdtle, A.P. Kipp, Nutrients 11 (2019).
[63] P.I. Oteiza, Free Radic. Biol. Med. 53 (2012) 1748–1759.
[64] D. do N. Marreiro, K.J.C. Cruz, J.B.S. Morais, J.B. Beserra, J.S. Severo, A.R.S. de Oliveira, Antioxidants (Basel) 6 (2017).
[65] Y. Song, S.W. Leonard, M.G. Traber, E. Ho, J. Nutr. 139 (2009) 1626–1631.
[66] M.R. Nazem, M. Asadi, N. Jabbari, A. Allameh, Clin. Biochem. 69 (2019) 15–20.
[67] T. Sawada, K. Yokoi, Eur. J. Clin. Nutr. 64 (2010) 331–333.
[68] S. Siahbazi, S. Behboudi-Gandevani, L. Moghaddam-Banaem, A. Montazeri, J. Obstet. Gynaecol. Res. 43 (2017) 887–894.
[69] E. Ranjbar, J. Shams, M. Sabetkasaei, M. M-Shirazi, B. Rashidkhani, A. Mostafavi, E. Bornak, J. Nasrollahzadeh, Nutr. Neurosci. 17 (2014) 65–71.
[70] S. Yosaee, S. Soltani, A. Esteghamati, S.A. Motevalian, M. Tehrani-Doost, C.C.T. Clark, S. Jazayeri, Nutrition 71 (2020) 110601.
[71] W. Swardfager, N. Herrmann, R.S. McIntyre, G. Mazereeuw, K. Goldberger, D.S. Cha, Y. Schwartz, K.L. Lanctôt, Neurosci. Biobehav. Rev. 37 (2013) 911–929.
[72] R.P. Tupe, S.A. Chiplonkar, J. Am. Coll. Nutr. 28 (2009) 388–396.
[73] R. Aquilani, P. Baiardi, M. Scocchi, P. Iadarola, M. Verri, P. Sessarego, F. Boschi, E. Pasini, O. Pastoris, S. Viglio, Nutr. Neurosci. 12 (2009) 219–225.
[74] Z. Solati, S. Jazayeri, M. Tehrani-Doost, S. Mahmoodianfard, M.R. Gohari, Nutr. Neurosci. 18 (2015) 162–168.
[75] Y. Yang, X.-P. Jing, S.-P. Zhang, R.-X. Gu, F.-X. Tang, X.-L. Wang, Y. Xiong, M. Qiu, X.-Y. Sun, D. Ke, J.-Z. Wang, R. Liu, PLoS One 8 (2013) e55384.
[76] F. Jafari, R. Amani, M.J. Tarrahi, Biol. Trace Elem. Res. 194 (2020) 89–95.
[77] Y. Cherasse, H. Saito, N. Nagata, K. Aritake, M. Lazarus, Y. Urade, Mol. Nutr. Food Res. 59 (2015) 2087–2093.
[78] H. Saito, Y. Cherasse, R. Suzuki, M. Mitarai, F. Ueda, Y. Urade, Molecular Nutrition & Food Research 61 (2017) 1600882.
[79] Y. Cherasse, Y. Urade, Int. J. Mol. Sci. 18 (2017).
[80] D.A. Newsome, M. Swartz, N.C. Leone, R.C. Elston, E. Miller, Arch. Ophthalmol. 106 (1988) 192–198.
[81] Age-Related Eye Disease Study 2 Research Group, JAMA 309 (2013) 2005–2015.
[82] Age-Related Eye Disease Study Research Group, Arch. Ophthalmol. 119 (2001) 1417–1436.
[83] M.A. Johnson, K.H. Porter, Nutr. Rev. 55 (1997) 400–404.
[84] F. Girodon, P. Galan, A.-L. Monget, M.-C. Boutron-Ruault, P. Brunet-Lecomte, P. Preziosi, J. Arnaud, J.-C. Manuguerra, S. Hercberg, Arch. Intern. Med. 159 (1999) 748–754.
[85] Institute of Medicine, Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Subcommittee of Interpretation and Uses of Dietary Reference Intakes, Subcommittee on Upper Reference Levels of Nutrients, Panel on Micronutrients, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academies Press, 2002.