Supports healthy aging *

Supports cellular health *


Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a plant flavonol belonging to the flavonoid polyphenol group. It is a yellow plant pigment, with its name originating from a German word (fisetholz) for a traditional yellow dye called “young fustic.” Polyphenols, like fisetin, play important roles in the plant kingdom. One of these roles is protecting plants from environmental stress. Because of this, fisetin is found in many plants, occurring in their green parts, fruits, barks, and hardwood. Fisetin is present in strawberries, apples, persimmon, grapes, onions, and cucumbers, as examples, though in very low amounts. Most of the research on fisetin has focused on its potential to support senolytic mechanisms and neuroprotective functions.* 


Fisetin is produced from the stems of Rhus succedanea (Japanese fruit wax tree), which is the primary commercial source used to make this dietary supplement ingredient. The high-purity standardized extract we use contains not less than 98% fisetin.

Fisetin is non-GMO, gluten-free, vegan, and Kosher and Halal certified.


We chose the recommended dose of fisetin based on how it is most commonly being dosed in clinical research to support senolytic functions. As an example, in several ongoing studies fisetin is being dosed at 20 mg per kg body weight daily, orally for 2 consecutive days ( identifier NCT03675724, NCT03430037, NCT04476953, NCT04771611, NCT03325322). The 1400 mg fisetin dose in Qualia Senolytic would correspond to the daily dose being used in these studies for a person weighing approximately 155 pounds (70 kg). The approach to dosing recommended (i.e., take for 2 consecutive days followed by 28 days before the next dosing cycle) is consistent with the intermittent dosing approaches being used in some ongoing studies, and more broadly with how fisetin is being dosed by experts in the healthy aging community the Neurohacker science team has been in communication with. Our recommended dose selection also took into account that Qualia Senolytic contains several other ingredients which would be expected to be complementary with fisetin. 


Brain aging*

Supports cognition of senescence-accelerated mice [1]

Supports synaptic function  [1]

Supports stress markers [1]

Supports immune signaling [1,2]

Supports relative α-power, β-power, and multi-unit activity count (aged rats) [3] 

Supports cognitive and behavioral performance of aged rats [3]

Supports antioxidant defenses (aged rats and aging model) [2,4]

Supports Sirt1/Nrf2 signaling (aging model) [2] 

Influences NF-kB pathway (aging model) [2]

Supports mitochondrial function (aged rats) [4]

Supports autophagy (aged rats) [4]

Healthy aging and longevity*

Restores tissue homeostasis (late life mice) [5] 

Supports liver antioxidant defenses [5]

Supports the management of senescent cells [5]

Supports cellular functions involved with pruning stressed cells [6–12]

Supports autophagy [4,13–17]

Supports mitophagy [18,19]

Supports immune signaling [15,19,20]

Cellular signaling* 

Influences PI3K/AKT [11,14,15,21–23]

Influences mTOR signaling [11,13–15,21–23]

Influences AMPK signaling [13,14,16,24,25]

Influences SIRT1 signaling [16]

Influences NF-κB signaling [6,26–29]

Influences HIF-1α [8,30]

Complementary ingredients*

Luteolin in influencing immune signaling [31,32]. 

*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


[1]A. Currais, C. Farrokhi, R. Dargusch, A. Armando, O. Quehenberger, D. Schubert, P. Maher, J. Gerontol. A Biol. Sci. Med. Sci. 73 (2018) 299–307.

[2]S. Ahmad, A. Khan, W. Ali, M.H. Jo, J. Park, M. Ikram, M.O. Kim, Front. Pharmacol. 12 (2021) 612078.

[3]J. Das, R. Singh, S. Ladol, S.K. Nayak, D. Sharma, Exp. Gerontol. 138 (2020) 111006.

[4]S. Singh, A.K. Singh, G. Garg, S.I. Rizvi, Life Sci. 193 (2018) 171–179.

[5]M.J. Yousefzadeh, Y. Zhu, S.J. McGowan, L. Angelini, H. Fuhrmann-Stroissnigg, M. Xu, Y.Y. Ling, K.I. Melos, T. Pirtskhalava, C.L. Inman, C. McGuckian, E.A. Wade, J.I. Kato, D. Grassi, M. Wentworth, C.E. Burd, E.A. Arriaga, W.L. Ladiges, T. Tchkonia, J.L. Kirkland, P.D. Robbins, L.J. Niedernhofer, EBioMedicine 36 (2018) 18–28.

[6]J. Li, Y. Cheng, W. Qu, Y. Sun, Z. Wang, H. Wang, B. Tian, Basic Clin. Pharmacol. Toxicol. 108 (2011) 84–93.

[7]H.C. Pal, S. Sharma, C.A. Elmets, M. Athar, F. Afaq, Exp. Dermatol. 22 (2013) 470–475.

[8]J.A. Kim, S. Lee, D.-E. Kim, M. Kim, B.-M. Kwon, D.C. Han, Carcinogenesis 36 (2015) 696–706.

[9]S. Verma, A. Singh, A. Kumari, C. Tyagi, S. Goyal, S. Jamal, A. Grover, J. Recept. Signal Transduct. Res. 37 (2017) 391–400.

[10]Y.-H. Tsai, J.-J. Lin, Y.-S. Ma, S.-F. Peng, A.-C. Huang, Y.-P. Huang, M.-J. Fan, J.-C. Lien, J.-G. Chung, Am. J. Chin. Med. 47 (2019) 841–863.

[11]J.Y. Lim, J.Y. Lee, B.J. Byun, S.H. Kim, Toxicol Rep 2 (2015) 984–989.

[12]Y.-S. Li, X.-J. Qin, W. Dai, Am. J. Transl. Res. 9 (2017) 5678–5683.

[13]S. Jia, X. Xu, S. Zhou, Y. Chen, G. Ding, L. Cao, Cell Death Dis. 10 (2019) 142.

[14]K. Sundarraj, A. Raghunath, L. Panneerselvam, E. Perumal, Nutr. Cancer 73 (2021) 2502–2514.

[15]Y. Sun, H. Qin, H. Zhang, X. Feng, L. Yang, D.-X. Hou, J. Chen, Food Nutr. Res. 65 (2021).

[16]W. Yang, Z.-K. Tian, H.-X. Yang, Z.-J. Feng, J.-M. Sun, H. Jiang, C. Cheng, Q.-L. Ming, C.-M. Liu, Food Chem. Toxicol. 134 (2019) 110824.

[17]S. Kim, K.J. Choi, S.-J. Cho, S.-M. Yun, J.-P. Jeon, Y.H. Koh, J. Song, G.V.W. Johnson, C. Jo, Sci. Rep. 6 (2016) 24933.

[18]H. Ding, Y. Li, S. Chen, Y. Wen, S. Zhang, E. Luo, X. Li, W. Zhong, H. Zeng, CNS Neurosci. Ther. 28 (2022) 247–258.

[19]I.M.N. Molagoda, A.M.G.K. Athapaththu, Y.H. Choi, C. Park, C.-Y. Jin, C.-H. Kang, M.-H. Lee, G.-Y. Kim, Antioxidants (Basel) 10 (2021).

[20]J.H. Kim, M.-Y. Kim, J.-H. Kim, J.Y. Cho, Biomol. Ther. 23 (2015) 414–420.

[21]D.N. Syed, V.M. Adhami, M.I. Khan, H. Mukhtar, Anticancer Agents Med. Chem. 13 (2013) 995–1001.

[22]J.C. Chamcheu, S. Esnault, V.M. Adhami, A.L. Noll, S. Banang-Mbeumi, T. Roy, S.S. Singh, S. Huang, K.G. Kousoulas, H. Mukhtar, Cells 8 (2019).

[23]V.M. Adhami, D.N. Syed, N. Khan, H. Mukhtar, Biochem. Pharmacol. 84 (2012) 1277–1281.

[24]C.-J. Liou, C.-H. Wei, Y.-L. Chen, C.-Y. Cheng, C.-L. Wang, W.-C. Huang, Cell. Physiol. Biochem. 49 (2018) 1870–1884.

[25]J.-L. Pu, Z.-T. Huang, Y.-H. Luo, T. Mou, T.-T. Li, Z.-T. Li, X.-F. Wei, Z.-J. Wu, Hepatobiliary Pancreat. Dis. Int 20 (2021) 352–360.

[26]Q. Ren, F. Guo, S. Tao, R. Huang, L. Ma, P. Fu, Biomed. Pharmacother. 122 (2020) 109772.

[27]W. Huang, M.-L. Li, M.-Y. Xia, J.-Y. Shao, Int. J. Mol. Med. 42 (2018) 208–218.

[28]J. Cui, J. Fan, H. Li, J. Zhang, J. Tong, Neuroreport 32 (2021) 296–305.

[29]W. Dong, C. Jia, J. Li, Y. Zhou, Y. Luo, J. Liu, Z. Zhao, J. Zhang, S. Lin, Y. Chen, Front. Pharmacol. 13 (2022) 783706.

[30]E. Ansó, A. Zuazo, M. Irigoyen, M.C. Urdaci, A. Rouzaut, J.J. Martínez-Irujo, Biochem. Pharmacol. 79 (2010) 1600–1609.

[31]A. Kim, J.-M. Yun, J. Med. Food 20 (2017) 782–789.

[32]M. Hytti, D. Szabó, N. Piippo, E. Korhonen, P. Honkakoski, K. Kaarniranta, G. Petrovski, A. Kauppinen, J. Nutr. Biochem. 42 (2017) 37–42.