Magnesium (from Aquamin® Mg (magnesium hydroxide from seawater))




Supports sleep*

Supports cardiovascular function*

Supports mood*

Supports musculoskeletal health*

Supports cellular health*


Magnesium is one of the most abundant minerals in the body and is vital for the functioning of all living cells. It’s used in more than 300 enzymes. ATP (i.e., cellular energy) occurs complexed with magnesium, so all enzymes utilizing ATP require magnesium. The same is true for enzymes that synthesize DNA and RNA, magnesium is always involved. Magnesium also plays a large role in breaking down sugars (glycolysis). Because magnesium supports the electrical functions of cells (i.e., it’s an electrolyte), muscle and nerve function rely on magnesium. Magnesium has a number of functional roles that interact with stress [1]. Aquamin® Mg is a bioavailable source of magnesium that also contains lesser amounts of 71 other minerals (most of which are trace minerals) [2] Aquamin® Mg has been studied for supporting gut microbiota [3].* 


Aquamin® Mg is a natural source of magnesium derived from the clean sea waters off the Irish coast.

Magnesium from Aquamin®  is standardized to contain not less than 33% magnesium (as magnesium hydroxide). It also supplies 72 minerals and trace minerals.

Magnesium from Aquamin® is a non-GMO, Vegan, Kosher certified, Halal certified, EU health certified, and Allergen free ingredient. 

Aquamin® is a registered trademark of Marigot Ltd. of Cork Ireland.


The Recommended Dietary Allowances for magnesium in adults varies from 310 to 420 depending upon age and gender. A majority of Americans of all ages fall somewhat short of this amount. Supplying even a low dose of magnesium can help close the gap. We generally dose it in small amounts to augment dietary intake of magnesium and complement other ingredients in a formula.*


Supports metabolism and energy generation*

Required for the synthesis of ATP by ATP synthase in mitochondria  [4,5]

Forms a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes [6]

Cofactor for rate-limiting enzymes involved in carbohydrate and lipid metabolism [6,7]

Cofactor for rate-limiting enzymes involved protein and nucleic acid synthesis [6,7]

Supports healthy insulin sensitivity [8,9]

Supports cell signaling*

Supports cellular sodium and potassium influx and efflux [6]

Modulates calcium entry into cells so supports balanced calcium signaling [6,7]

Cofactor for protein phosphorylation (enzyme activation) [6,7]

Cofactor for the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis [10]

Supports cell structure*

Stabilizes proteins, nucleic acids, chromosomes, and biological membranes [6]

Supports cardiovascular function*

Supports cardiac muscle contraction and heart rhythm [7,11]

Supports vascular tone [7,11]

Supports platelet function [7,12]

Supports brain function*

Supports normal hearing [13–19]

Supports normal neurotransmitter release and healthy neurological function* [7]

Supports the activity of the glutamate N-methyl-D-aspartate (NMDA) receptor [20,21]

Supports glutamate dehydrogenase (GDH) enzyme - converts glutamate to α-ketoglutarate, and vice versa [22,23]

Supports serotonin N-acetyltransferase - an enzyme that is involved in the day/night rhythmic production of melatonin from serotonin [24,25]

Supports brain-derived neurotrophic factor (BDNF) [21,26,27]

Supports neural stem cell proliferation [28]

Supports brain mitochondrial function [28]

Supports a healthy mood*

Supports mental well-being [29,30] 

Supports healthy behavioral and physiological responses to stress [27,31–34] 

Promotes healthy sleep* 

Supports sleep quality [35–38]

Supports healthy EEG and neuroendocrine responses during sleep [39,40]

Supports sleep organization and regulation [41–44]

Supports exercise tolerance if sleep is insufficient [45]

Supports healthy muscle function*

Required for muscle contraction [7,46]

Supports muscle strength [47,48]

Supports a healthy skeletal system*

Supports bone metabolism/remodeling by calcium absorption [6]

Supports calcitonin and parathyroid hormone activity [6]

Supports normal bone formation [6]

Promotes a balanced gut microbiota*

Supports a healthy composition of the gut microbiota [3,49,50]

Complementary ingredients*

Commonly supplemented with calcium for bone support 

Supports vitamin D metabolism [51]

B-complex vitamins and melatonin supplementation for sleep support [52]

Zinc and melatonin supplementation for sleep support [53]

Vitamin B6 for mood support [54,55]

Hawthorn and California poppy for mood support [56]

Antioxidant vitamins for hearing support [57–59]

*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


[1]M.D. Cuciureanu, R. Vink, in: R. Vink, M. Nechifor (Eds.), Magnesium in the Central Nervous System, University of Adelaide Press, Adelaide (AU), 2018.

[2]V.D. Felice, D.M. O’Gorman, N.M. O’Brien, N.P. Hyland, Nutrients 10 (2018).

[3]E.K. Crowley, C.M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D.M. O’Gorman, C. Stanton, Y.M. Nolan, Mar. Drugs 16 (2018).

[4]Y.H. Ko, S. Hong, P.L. Pedersen, J. Biol. Chem. 274 (1999) 28853–28856.

[5]A.U. Igamberdiev, L.A. Kleczkowski, Front. Plant Sci. 6 (2015) 10.

[6]S.-M. Glasdam, S. Glasdam, G.H. Peters, Adv. Clin. Chem. 73 (2016) 169–193.

[7]W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5 (2012) i3–i14.

[8]M. Barbagallo, L.J. Dominguez, Arch. Biochem. Biophys. 458 (2007) 40–47.

[9]M. de L. Lima, T. Cruz, L.E. Rodrigues, O. Bomfim, J. Melo, R. Correia, M. Porto, A. Cedro, E. Vicente, Diabetes Res. Clin. Pract. 83 (2009) 257–262.

[10]S.Y. Cech, W.C. Broaddus, M.E. Maguire, Mol. Cell. Biochem. 33 (1980) 67–92.

[11]B.M. Altura, B.T. Altura, Magnesium 4 (1985) 226–244.

[12]M. Shechter, C.N. Merz, M. Paul-Labrador, S.R. Meisel, R.K. Rude, M.D. Molloy, J.H. Dwyer, P.K. Shah, S. Kaul, Am. J. Cardiol. 84 (1999) 152–156.

[13]Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, J. Attias, G. Weisz, T. Günther, Schriftenr. Ver. Wasser Boden Lufthyg. 88 (1993) 503–516.

[14]J. Attias, G. Weisz, S. Almog, A. Shahar, M. Wiener, Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, T. Guenther, Am. J. Otolaryngol. 15 (1994) 26–32.

[15]F. Scheibe, H. Haupt, B. Mazurek, O. König, Noise Health 3 (2001) 79–84.

[16]A. Gordin, D. Goldenberg, A. Golz, A. Netzer, H.Z. Joachims, Otol. Neurotol. 23 (2002) 447–451.

[17]B.I. Nageris, D. Ulanovski, J. Attias, Ann. Otol. Rhinol. Laryngol. 113 (2004) 672–675.

[18]J. Attias, S. Sapir, I. Bresloff, I. Reshef-Haran, H. Ising, Clin. Otolaryngol. Allied Sci. 29 (2004) 635–641.

[19]M.J. Cevette, D.M. Barrs, A. Patel, K.P. Conroy, S. Sydlowski, B.N. Noble, G.A. Nelson, J. Stepanek, Int. Tinnitus J. 16 (2011) 168–173.

[20]J.P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience 6 (1994) 87–96.

[21]N. Abumaria, B. Yin, L. Zhang, X.-Y. Li, T. Chen, G. Descalzi, L. Zhao, M. Ahn, L. Luo, C. Ran, M. Zhuo, G. Liu, J. Neurosci. 31 (2011) 14871–14881.

[22]L.A. Fahien, J.K. Teller, M.J. Macdonald, C.M. Fahien, Mol. Pharmacol. 37 (1990) 943–949.

[23]B. Pochwat, G. Nowak, B. Szewczyk, Pharmacol. Rep. 68 (2016) 881–885.

[24]D.J. Morton, M.F. James, J. Pineal Res. 2 (1985) 387–391.

[25]A.J. Billyard, D.L. Eggett, K.B. Franz, Magnes. Res. 19 (2006) 157–161.

[26]B. Pochwat, M. Sowa-Kucma, K. Kotarska, P. Misztak, G. Nowak, B. Szewczyk, Psychopharmacology 232 (2015) 355–367.

[27]J. Petrović, D. Stanić, Z. Bulat, N. Puškaš, M. Labudović-Borović, B. Batinić, D. Mirković, S. Ignjatović, V. Pešić, Horm. Behav. 105 (2018) 1–10.

[28]S. Jia, C. Mou, Y. Ma, R. Han, X. Li, Cell Biol. Int. 40 (2016) 465–471.

[29]G.A. Eby, K.L. Eby, Med. Hypotheses 67 (2006) 362–370.

[30]N.B. Boyle, C. Lawton, L. Dye, Nutrients 9 (2017) 429.

[31]E. Poleszak, B. Szewczyk, E. Kedzierska, P. Wlaź, A. Pilc, G. Nowak, Pharmacol. Biochem. Behav. 78 (2004) 7–12.

[32]L. Fromm, D.L. Heath, R. Vink, A.J. Nimmo, J. Am. Coll. Nutr. 23 (2004) 529S–533S.

[33]I.N. Iezhitsa, A.A. Spasov, M.V. Kharitonova, M.S. Kravchenko, Nutr. Neurosci. 14 (2011) 10–24.

[34]E. Poleszak, Pharmacol. Rep. 60 (2008) 483–489.

[35]M. Hornyak, U. Voderholzer, F. Hohagen, M. Berger, D. Riemann, Sleep 21 (1998) 501–505.

[36]M. Hornyak, P. Haas, J. Veit, H. Gann, D. Riemann, Alcohol. Clin. Exp. Res. 28 (2004) 1702–1709.

[37]B. Abbasi, M. Kimiagar, K. Sadeghniiat, M.M. Shirazi, M. Hedayati, B. Rashidkhani, J. Res. Med. Sci. 17 (2012) 1161–1169.

[38]N.R. Maor, M. Alperin, E. Shturman, H. Khairaldeen, M. Friedman, K. Karkabi, U. Milman, JAMA Intern. Med. 177 (2017) 617–623.

[39]K. Held, I.A. Antonijevic, H. Künzel, M. Uhr, T.C. Wetter, I.C. Golly, A. Steiger, H. Murck, Pharmacopsychiatry 35 (2002) 135–143.

[40]H. Murck, A. Steiger, Psychopharmacology 137 (1998) 247–252.

[41]S. Poenaru, S. Rouhani, J. Durlach, N. Aymard, F. Belkahla, Y. Rayssiguier, M. Iovino, Magnesium 3 (1984) 145–151.

[42]L. Popoviciu, D. Delast-Popoviciu, R. Delast-Popoviciu, I. Bagathai, G. Bicher, C. Buksa, S. Covaciu, E. Szalay, Rom. J. Neurol. Psychiatry 28 (1990) 19–24.

[43]H. Depoortere, D. Françon, J. Llopis, Neuropsychobiology 27 (1993) 237–245.

[44]D. Chollet, P. Franken, Y. Raffin, J.G. Henrotte, J. Widmer, A. Malafosse, M. Tafti, Behav. Genet. 31 (2001) 413–425.

[45]K. Tanabe, A. Yamamoto, N. Suzuki, N. Osada, Y. Yokoyama, H. Samejima, A. Seki, M. Oya, T. Murabayashi, M. Nakayama, M. Yamamoto, K. Omiya, H. Itoh, M. Murayama, Japanese Circulation Journal 62 (1998) 341–346.

[46]J.D. Potter, S.P. Robertson, J.D. Johnson, Fed. Proc. 40 (1981) 2653–2656.

[47]L.R. Brilla, T.F. Haley, J. Am. Coll. Nutr. 11 (1992) 326–329.

[48]L.J. Dominguez, M. Barbagallo, F. Lauretani, S. Bandinelli, A. Bos, A.M. Corsi, E.M. Simonsick, L. Ferrucci, Am. J. Clin. Nutr. 84 (2006) 419–426.

[49]B. Pyndt Jørgensen, G. Winther, P. Kihl, D.S. Nielsen, G. Wegener, A.K. Hansen, D.B. Sørensen, Acta Neuropsychiatr. 27 (2015) 307–311.

[50]G. Winther, B.M. Pyndt Jørgensen, B. Elfving, D.S. Nielsen, P. Kihl, S. Lund, D.B. Sørensen, G. Wegener, Acta Neuropsychiatr. 27 (2015) 168–176.

[51]Q. Dai, M.J. Shrubsole, R.M. Ness, D. Schlundt, Q. Cai, W.E. Smalley, M. Li, Y. Shyr, W. Zheng, Am. J. Clin. Nutr. 86 (2007) 743–751.

[52]G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, T. Lotti, Open Access Macedonian Journal of Medical Sciences 7 (2019) 3101–3105.

[53]M. Rondanelli, A. Opizzi, F. Monteferrario, N. Antoniello, R. Manni, C. Klersy, Journal of the American Geriatrics Society 59 (2011) 82–90.

[54]M.C.D. Souza, M.C. De Souza, A.F. Walker, P.A. Robinson, K. Bolland, Journal of Women’s Health & Gender-Based Medicine 9 (2000) 131–139.

[55]V.V. Kalinin, E.V. Zheleznova, T.A. Rogacheva, L.V. Sokolova, D.A. Polianskiĭ, A.A. Zemlianaia, D.M. Nazmetdinova, Zh. Nevrol. Psikhiatr. Im. S S Korsakova 104 (2004) 51–55.

[56]M. Hanus, J. Lafon, M. Mathieu, Curr. Med. Res. Opin. 20 (2004) 63–71.

[57]C.G. Le Prell, L.F. Hughes, J.M. Miller, Free Radic. Biol. Med. 42 (2007) 1454–1463.

[58]J.C. Alvarado, V. Fuentes-Santamaría, M.C. Gabaldón-Ull, J.M. Juiz, Front. Neurosci. 12 (2018) 527.

[59]C.G. Le Prell, P.M. Gagnon, D.C. Bennett, K.K. Ohlemiller, Transl. Res. 158 (2011) 38–53.