Rosmarinus officinalis Leaf Extract

Rosemary Extract Common Name

Rosemary | Garden Rosemary

Top Benefits of Rosemary Extract

  • Supports healthy aging*
  • Supports exercise performance*
  • Supports muscle structure and function*
  • Supports healthy metabolic pathways*
  • Supports healthy weight*
  • Supports mitochondrial biogenesis, structure and function*
  • Supports antioxidant defenses*
  • Supports healthy cellular responses*
  • Supports brain function*
  • Supports cardiovascular function*
  • Supports liver function*
  • Supports healthy gut microbiota*  

What is Rosemary Extract?

Rosemary is a member of the mint family. It's common name derives from Latin and translates as “dew of the sea.” Rosemary was used as a spice and folk medicine by Egyptians, Greeks, and Latins cultures, thriving close to the coast especially in dryer areas throughout the Mediterranean. Rosmarinus officinalis contains a range of health-supporting polyphenols, including diterpenes (e.g., carnosol, carnosic acid, rosmarinic acid) and a triterpene called ursolic acid (sometimes referred to as urson, prunol, malol, or 3-beta-3-hydroxy-urs-12-ene-28-oic-acid). Triterpenes are produced by plants as part of their self-defense mechanism, so tend to concentrate in areas that come in direct contact with the external environment. This is the case with ursolic acid: It was originally identified in the epicuticular waxes of apple peels as early as 1920’s. While all apple peels contain some ursolic acid, the amount varies about 4-fold depending on variety. Fuji and Smith apple varieties are the best source, with the peel of medium-sized apple containing about 50 mg 1. Ursolic acid is also found in the peels of other fruits, and in kitchen spice herbs like basil, rosemary and thyme. Ursolic acid supports a variety of functional areas, many of which overlap with the response to exercise (e.g., support antioxidant defenses, enhance insulin sensitivity, stimulate mitochondrial biogenesis, upregulat sirtuins, activate AMPK). One of it’s more unique functional support areas is as a resistance training mimetic, supporting the development of new muscle fibers and muscle rejuvenation.

Neurohacker’s Rosemary Extract Sourcing

Rosemary Extract was selected because it’s standardized to contain 50% ursolic acid.

We opted for a rosemary extract for two reasons. Ursolic acid from rosemary extract is what’s been used in human clinical studies. Second, rosemary is complementary to ursolic acid, supporting antioxidant defenses, cellular detoxification and protective functions.

Studies of this extract suggest it supports muscle growth, rejuvenation, and performance. *

Rosemary Extract Dosing Principles and Rationale

Many polyphenol compounds have produce either a threshold response or follow hormetic dosing principles (see Neurohacker Dosing Principles). Because one of the main active compounds in rosemary extract is polyphenol ursolic acid, we expect the extract to have a hormetic range (i.e., a dosing range above which results could be poorer). Extrapolating from animal and human experiments, we expect this range to be from about 100 to 450 mg. We have selected to dose towards the lower end of the range, because we anticipate it having additive or synergistic effects with other polyphenol ingredients.*

Rosemary Extract Key Mechanisms

 Mitochondrial biogenesis

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) 2
  • Upregulates PGC-1β 3,4
  • Upregulates cAMP-PKA-CREB signaling pathway 5
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (mitochondrial transcription factor A [TFAM]) 2

Mitochondrial structure and function

  • Upregulates mitochondrial mass 2
  • Promotes ATP production 2
  • Upregulates signaling pathways: AMP-activated protein kinase (AMPK) 2,6–9
  • Supports complex IV (cytochrome C oxidase) performance 2
  • Supports mitochondrial β-oxidation – upregulates peroxisome proliferator-activated receptor alpha (PPARα) 10

Exercise performance (ergogenic effects)

  • Supports endurance performance 2,11,12
  • Supports muscle strength 2,11–13

Muscle Structure/Function

  • Upregulates muscle mass and the size of skeletal muscle fibers 8,11,12
  • Promotes the generation of new muscle fibers 14,15
  • Supports post-exercise recovery and skeletal muscle damage prevention 16
  • Upregulates muscle cell glucose uptake via AMPK activation 7–9
  • Upregulates insulin-like growth factor-1 (IGF-1) signaling in skeletal muscle 8,11
  • Downregulates lactic acid production 12

Metabolism

  • Supports healthy insulin sensitivity 10,17–23
  • Upregulates glucose regulatory enzymes 24
  • Supports citric acid cycle function via upregulation of citrate synthase 2
  • Upregulates insulin-like growth factor-1 (IGF-1) in the blood 13

Body weight 

  • Supports healthy body weight 6,11,18
  • Promotes lean mass 11,12
  • Promotes energy expenditure 6
  • Downregulates fat accumulation and blood/liver lipid levels 6,8,10,11,13,17,19
  • Promotes free fatty acid uptake and β-oxidation and prevents intracellular fat storage in skeletal muscle cells  6
  • Upregulates adiponectin concentrations 10
  • Promotes brown adipose tissue production 11

Antioxidant defenses

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) 25–30
  • Downregulates reactive oxygen species (ROS) production 2,26
  • Replenishes glutathione (GSH) levels 17,26

Cellular signaling 

  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) in the spinal cord; regulates peripheral cytokine signaling 31
  • Downregulates tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) levels 17,28

Brain function

  • Upregulates longevity biomarkers in the hypothalamus 4
  • Downregulattes ROS and oxidative stress in the brain  26
  • Supports spatial learning and memory (in rats) 25,29
  • Protects from neuronal degeneration 29
  • Downregulates oxidative stress in the hippocampus 29
  • Regulates cytokine signaling in the hippocampus 29

Cardiovascular function

  • Supports healthy cholesterol levels 10,28
  • Supports vascular health 32,33

Liver function

  • Promotes hepatic autophagy 10
  • Upregulates xenobiotic detoxification enzymes: NAD(P)H-quinone reductase and glutathione-S-transferase 34,35
  • Mediates hepatic protection 3

Gut microbiota

  • Regulates the composition of the gut microbiota 36
  • Regulates gut microbial metabolism 36

Healthy aging and longevity

  • Upregulates SIRT1 and SIRT6 3,4,33,37,38
  • Supports "mild" mitochondrial uncoupling: upregulates mitochondrial uncoupling protein 1 (UCP1) and UCP3 2,6,11
  • Upregulates the expression of Klotho 3,4
  • Downregulates advanced glycation end-products (AGEs) 17,39,40
  • Inhibits poly [ADP-ribose] polymerase 1 (PARP1, also known as NAD+ ADP-ribosyltransferase 1 or poly[ADP-ribose] synthase 1) 41


REFERENCES

1. Frighetto RTS, et al. Food Chem. 2008;106(2):767-771. doi:10.1016/j.foodchem.2007.06.003
2. Chen J, et al. Food Funct. 2017;8(7):2425-2436. doi:10.1039/c7fo00127d
3. Gharibi S,et al. Curr Aging Sci. 2018;11(1):16-23. doi:10.2174/1874609810666170531103140
4. Bahrami SA, Bakhtiari N. Biomed Pharmacother. 2016;82:8-14. doi:10.1016/j.biopha.2016.04.047
5. Lewinska A, et al. Apoptosis. 2017;22(6):800-815. doi:10.1007/s10495-017-1353-7
6. Chu X, et al. Mol Nutr Food Res. 2015;59(8):1491-1503. doi:10.1002/mnfr.201400670
7. Naimi M, et al. Appl Physiol Nutr Metab. 2015;40(4):407-413. doi:10.1139/apnm-2014-0430
8. Vlavcheski F, et al. Molecules. 2017;22(10). doi:10.3390/molecules22101669
9. Naimi M, et al. Clin Exp Pharmacol Physiol. 2017;44(1):94-102. doi:10.1111/1440-1681.12674
10. Jia Y, et al. Mol Nutr Food Res. 2015;59(2):344-354. doi:10.1002/mnfr.201400399
11. Kunkel SD, et al. PLoS One. 2012;7(6):e39332. doi:10.1371/journal.pone.0039332
12. Jeong J-W, et al. J Med Food. 2015;18(12):1380-1386. doi:10.1089/jmf.2014.3401
13. Bang HS, et al. Korean J Physiol Pharmacol. 2014;18(5):441-446. doi:10.4196/kjpp.2014.18.5.441
14. Bakhtiari N. JSRB. 2017;3(1):1-5. doi:10.15436/2471-0598.16.015
15. Bakhtiari N, et al. Med Hypotheses. 2015;85(1):1-6. doi:10.1016/j.mehy.2015.02.014
16. Bang HS, et al. Korean J Physiol Pharmacol. 2017;21(6):651-656. doi:10.4196/kjpp.2017.21.6.651
17. Zhao Y, et al. J Agric Food Chem. 2015;63(19):4843-4852. doi:10.1021/acs.jafc.5b01246
18. Ramírez-Rodríguez AM, et al. J Med Food. 2017;20(9):882-886. doi:10.1089/jmf.2017.0003
19. Jayaprakasam B, et al. J Agric Food Chem. 2006;54(1):243-248. doi:10.1021/jf0520342
20. Sundaresan A, et al. J Physiol Biochem. 2016;72(2):345-352. doi:10.1007/s13105-016-0484-6
21. Zhang W, et al. Biochim Biophys Acta. 2006;1760(10):1505-1512. doi:10.1016/j.bbagen.2006.05.009
22. Jung SH, et al. Biochem J. 2007;403(2):243-250. doi:10.1042/BJ20061123
23. Ma P, et al. Am J Transl Res. 2016;8(9):3791-3801. PMID: 27725859.
24. Jang S-M, et al. Metabolism. 2010;59(4):512-519. doi:10.1016/j.metabol.2009.07.040
25. Rasoolijazi H, et al. Med J Islam Repub Iran. 2015;29:187. PMID: 26034740.
26. de Almeida Gonçalves G, et al. Food Funct. 2018;9(4):2328-2340. doi:10.1039/c7fo01928a
27. Wang H-L, et al. J Food Sci. 2017;82(4):1006-1011. doi:10.1111/1750-3841.13656
28. Samarghandian S, et al. Cardiovasc Hematol Disord Drug Targets. 2017;17(1):11-17. doi:10.2174/1871529X16666161229154910
29. Song H, et al. Neurosci Lett. 2016;622:95-101. doi:10.1016/j.neulet.2016.04.048
30. Nazem F, et al. Can J Diabetes. 2015;39(3):229-234. doi:10.1016/j.jcjd.2014.11.003
31. Zhang Y, et al. Mol Med Rep. 2016;13(6):5309-5316. doi:10.3892/mmr.2016.5172
32. Ullevig SL, et al. Atherosclerosis. 2011;219(2):409-416. doi:10.1016/j.atherosclerosis.2011.06.013
33. Jiang Q, et al. Mol Cell Biochem. 2016;420(1-2):171-184. doi:10.1007/s11010-016-2787-x
34. Singletary KW. Cancer Lett. 1996;100(1-2):139-144.
35. Singletary KW, Rokusek JT. Plant Foods Hum Nutr. 1997;50(1):47-53. PMID: 9198114.
36. Romo-Vaquero M, et al. PLoS One. 2014;9(4):e94687. doi:10.1371/journal.pone.0094687
37. Bakhtiari N, et al. Arch Biochem Biophys. 2018;650:39-48. doi:10.1016/j.abb.2018.05.012
38. Gao L, et al. Mol Nutr Food Res. 2016;60(9):1902-1911. doi:10.1002/mnfr.201500878
39. Ou J, et al. Food Chem. 2017;221:1057-1061. doi:10.1016/j.foodchem.2016.11.056
40. Wang Z-H, et al. Eur J Pharmacol. 2010;628(1-3):255-260. doi:10.1016/j.ejphar.2009.11.019
41. Su C, et al. Sci Rep. 2017;7(1):16704. doi:10.1038/s41598-017-16795-3