Gamma-Oryzanol | Ferulic Acids


Supports antioxidant defenses*
Supports menopause*
Supports mood*
Supports nervous system*
Supports cognitive function*


Gamma-oryzanol (γ-oryzanol) is a mixture of lipid molecules called steryl ferulates. Like many secondary metabolites in plants, and similar to tocopherols which also naturally occur in the oils of seeds, γ-oryzanol is considered to be an antioxidant. The best food source is rice bran and germ—γ-oryzanol gets its name from the botanical name for rice, Oryza sativa. γ-oryzanol has been sold in Japan since 1962, and most of the human studies on it have been done in Japan and published in non-English papers. These studies have focused primarily on supporting aspects of menopause, mood, nervous system, and heart health. Animal studies have suggested cognitive, mood, stress, immune and sleep support functions.


γ-Oryzanol is sourced from rice bran oil which goes through several extraction steps resulting in a finished product that contains not less than 97% γ-Oryzanol.

γ-Oryzanol is Non-GMO and Vegan.


One of our dosing principles is to determine whether there is a dosing range, in which many of the benefits occur and above which there appears to be diminishing returns (i.e., a threshold), and to provide a dose within this threshold range (see Neurohacker Dosing Principles ). We consider γ-oryzanol to be one of these threshold compounds. Very modest amounts of γ-oryzanol—10 to 50 mg a day—have been needed to produce a functional benefit in some of the human studies, so we will typically use a dose within this range. In parts of the world where rice bran oil is used or rice bran is consumed, it is a naturally occurring part of the diet; however, there would be a negligible amount found in a typical western diet. The modest dose of γ-oryzanol supplied can be thought of as augmenting the intake of an ingredient that’s not found in a meaningful amount in many people’s diets.


Brain function
Supports learning and memory[1–4]
Supports histaminergic neurotransmission[5,6]
Supports brain mitochondrial function[3,7,8]
Supports adrenergic signaling[9–11]
Supports serotonin signaling[9–11]
Supports synaptic plasticity[1]
Supports brain mitochondrial function and energy metabolism[1]
Supports neuronal antioxidant defenses[1,10,12–14]
Supports neuroprotection functions[13,15–17]

Stress and sleep
Supports healthy behavioral and physiological responses to stress[3,9,14,18–22]
Supports non-rapid eye movement (NREM) sleep[5,6]

Antioxidant defenses
Supports antioxidant defenses (SOD, GPx)[1,14,17,23–25]
Supports Nrf2 signaling[24]
Supports phase II antioxidant enzymes (HO-1, NQO1)[2,21,24]
Counters ROS production and oxidative stress[14,17]

Healthy aging and longevity
Supports healthy cardiovascular function[23,26,27]
Supports healthy kidney function[28–30]
Supports healthy metabolic function[30–33]
Supports muscle strength[34]
Supports immune performance[35]
Supports mitochondrial function and biogenesis[3,7,17]
Supports autophagy[15,36]


[1] W. Rungratanawanich, G. Cenini, A. Mastinu, M. Sylvester, A. Wilkening, G. Abate, S.A. Bonini, F. Aria, M. Marziano, G. Maccarinelli, M. Memo, W. Voos, D. Uberti, Nutrients 11 (2019).
[2] A. Mastinu, S.A. Bonini, W. Rungratanawanich, F. Aria, M. Marziano, G. Maccarinelli, G. Abate, M. Premoli, M. Memo, D. Uberti, Nutrients 11 (2019).
[3] M.F. Zafeer, F. Firdaus, E. Anis, M. Mobarak Hossain, Neurotoxicology 73 (2019) 246–257.
[4] B. Michels, H. Zwaka, R. Bartels, O. Lushchak, K. Franke, T. Endres, M. Fendt, I. Song, M. Bakr, T. Budragchaa, B. Westermann, D. Mishra, C. Eschbach, S. Schreyer, A. Lingnau, C. Vahl, M. Hilker, R. Menzel, T. Kähne, V. Leßmann, A. Dityatev, L. Wessjohann, B. Gerber, Sci Adv 4 (2018) eaat6994.
[5] H. Yang, M. Yoon, M.Y. Um, J. Lee, J. Jung, C. Lee, Y.-T. Kim, S. Kwon, B. Kim, S. Cho, Nutrients 9 (2017).
[6] M.Y. Um, S. Kim, Y.-H. Jin, M. Yoon, H. Yang, J. Lee, J. Jung, Y. Urade, Z.-L. Huang, S. Kwon, S. Cho, Mol. Nutr. Food Res. 61 (2017).
[7] S. Hagl, H. Asseburg, M. Heinrich, N. Sus, E.-M. Blumrich, R. Dringen, J. Frank, G.P. Eckert, Neuromolecular Med. 18 (2016) 347–363.
[8] S. Hagl, D. Berressem, R. Grewal, N. Sus, J. Frank, G.P. Eckert, Nutr. Neurosci. 19 (2016) 1–10.
[9] S. Akter, H. Sasaki, K.R. Uddin, Y. Ikeda, H. Miyakawa, S. Shibata, Life Sci. 216 (2019) 119–128.
[10] A.M. Hussein, K.M. Abbas, O.A. Abulseoud, E.-H.M.A. El-Hussainy, Can. J. Physiol. Pharmacol. 95 (2017) 732–742.
[11] J. Chen, D. Lin, C. Zhang, G. Li, N. Zhang, L. Ruan, Q. Yan, J. Li, X. Yu, X. Xie, C. Pang, L. Cao, J. Pan, Y. Xu, Metab. Brain Dis. 30 (2015) 129–136.
[12] G. Erbil, U. Sacik, F. Yilmaz, H. Kisaoglu, Z. Erbayraktar, C. Pekcetin, C. Ozogul, Bratisl. Lek. Listy 120 (2019) 372–379.
[13] Z. Ren, R. Zhang, Y. Li, Y. Li, Z. Yang, H. Yang, Int. J. Mol. Med. 40 (2017) 1444–1456.
[14] J. Lenzi, A.F. Rodrigues, A. de S. Rós, A.B. de Castro, D.D. de Lima, D.D.D. Magro, A.L.B. Zeni, Metab. Brain Dis. 30 (2015) 1453–1463.
[15] C.-Y. Cheng, S.-T. Kao, Y.-C. Lee, Am. J. Chin. Med. 47 (2019) 39–61.
[16] C.-Y. Cheng, S.-T. Kao, Y.-C. Lee, Mol. Med. Rep. 19 (2019) 792–804.
[17] S.M. Araujo, M.T. de Paula, M.R. Poetini, L. Meichtry, V.C. Bortolotto, M.S. Zarzecki, C.R. Jesse, M. Prigol, Neurotoxicology 51 (2015) 96–105.
[18] A.L.B. Zeni, A. Camargo, A.P. Dalmagro, Steroids 125 (2017) 131–136.
[19] T. Singh, T. Kaur, R.K. Goel, Neurochem. Res. 42 (2017) 2940–2948.
[20] S. Akter, H. Sasaki, Y. Ikeda, H. Miyakawa, S. Shibata, J. Pharmacol. Sci. 138 (2018) 155–159.
[21] E. Mhillaj, S. Catino, F.M. Miceli, R. Santangelo, L. Trabace, V. Cuomo, C. Mancuso, Mol. Neurobiol. 55 (2018) 905–916.
[22] X. Zheng, Y. Cheng, Y. Chen, Y. Yue, Y. Li, S. Xia, Y. Li, H. Deng, J. Zhang, Y. Cao, Int. J. Mol. Sci. 20 (2019).
[23] A. Bumrungpert, R. Chongsuwat, C. Phosat, A. Butacnum, J. Altern. Complement. Med. 25 (2019) 353–358.
[24] W. Rungratanawanich, G. Abate, M.M. Serafini, M. Guarienti, M. Catanzaro, M. Marziano, M. Memo, C. Lanni, D. Uberti, Oxid. Med. Cell. Longev. 2018 (2018) 2987249.
[25] M. Ismail, G. Al-Naqeeb, W.A.A.B. Mamat, Z. Ahmad, Nutr. Metab. 7 (2010) 23.
[26] B.T. Nhung, L.D. Tuyen, V.A. Linh, N.D. Van Anh, T.T. Nga, V.T.M. Thuc, K. Yui, Y. Ito, Y. Nakashima, S. Yamamoto, J. Nutr. Sci. Vitaminol. 62 (2016) 295–302.
[27] C. Perez-Ternero, C. Claro, J. Parrado, M.D. Herrera, M. Alvarez de Sotomayor, Nutrition 37 (2017) 22–29.
[28] B. G, G. V, S. T, M.K. A S, H.K. C, S.K. G, Mol. Nutr. Food Res. 62 (2018) e1700511.
[29] F.V. Francisqueti, A.J.T. Ferron, F.K. Hasimoto, P.H.R. Alves, J.L. Garcia, K.C. Dos Santos, F. Moreto, V.D.S. Silva, A.L.A. Ferreira, I.O. Minatel, C.R. Corrêa, Oxid. Med. Cell. Longev. 2018 (2018) 1278392.
[30] F.V. Francisqueti, I.O. Minatel, A.J.T. Ferron, S.G.Z. Bazan, V.D.S. Silva, J.L. Garcia, D.H.S. de Campos, A.L. Ferreira, F. Moreto, A.C. Cicogna, C.R. Corrêa, Nutrients 9 (2017).
[31] H. Masuzaki, C. Kozuka, S. Okamoto, M. Yonamine, H. Tanaka, M. Shimabukuro, J. Diabetes Investig. 10 (2019) 18–25.
[32] L. Wang, Q. Lin, T. Yang, Y. Liang, Y. Nie, Y. Luo, J. Shen, X. Fu, Y. Tang, F. Luo, J. Agric. Food Chem. 65 (2017) 8374–8385.
[33] H.-H. Cheng, C.-Y. Ma, T.-W. Chou, Y.-Y. Chen, M.-H. Lai, Int. J. Vitam. Nutr. Res. 80 (2010) 45–53.
[34] S. Eslami, N.M. Esa, S.M. Marandi, G. Ghasemi, S. Eslami, Indian J. Med. Res. 139 (2014) 857–863.
[35] M. De la Fuente, S. Medina, I. Baeza, L. Jiménez, Eur. J. Nutr. 50 (2011) 563–573.
[36] J.-L. Chen, W.-J. Duan, S. Luo, S. Li, X.-H. Ma, B.-N. Hou, S.-Y. Cheng, S.-H. Fang, Q. Wang, S.-Q. Huang, Y.-B. Chen, Brain Res. 1666 (2017) 17–26.