Berriotics™ Fermented Berry Blend

Berriotics™ is a fermented mix of 10 kinds of berries: acerola, black currant, bilberry, cherry, chokeberry, cranberry, gooseberry, mulberry, raspberry and strawberry. The berry blend is fermented in a 4-stage process, lasting several weeks, using Aspergillus oryzae (koji, a fungus used to culture food), Saccharomyces cerevisiae (a nutritional yeast), Lactobacillus plantarum (a lactic acid bacteria), and Acetobacter aceti (an acetic acid bacteria). After fermentation, the live probiotic organisms used for fermenting the berry blend are inactivated. This makes Berriotics™ a postbiotic, containing cells from healthy bacteria (including Lactobacillus plantarum), as well as compounds and metabolites produced during the fermentation process. The fermentation process biotransforms the naturally occurring starches, proteins, fats, polyphenols, and other compounds within the berry blend. Berry polyphenols are converted to be potent antioxidants and be more easily assimilated by the body.* Fermentation creates unique metabolites that were not in the berry blend prior to fermentation (including short chain fatty acids like acetate and butyrate). And, fermentation “predigests” the starches and fibers found in the berries, breaking down many of them into smaller microfibers, which may be better food sources for our own gut microbiota [1]. 


TOP BENEFITS OF Berriotics™

Supports a healthy gut microbiota*

Supports gut-brain health*


NEUROHACKER’S Berriotics™ SOURCING

Berriotics™ is a spray-dried fermented powder of 10 kinds of berries: acerola (30%), mulberry (15%), cranberry (10%), cherry (7%), chokeberry (7%), raspberry (7%), strawberry (7%), black currant (6%), gooseberry (6%), bilberry (5%). 

Berriotics™ contains 6 billion inactivated cells of Lactobacillus plantarum per gram (in this inactivated form, the L. plantarum is considered to be a postbiotic, sometimes called a paraprobiotic).

Berriotics™ contains small amounts of short chain fatty acids (≥0.1% acetic acid, ≥0.05% butyric acid) created during the fermentation process. 

Berriotics™ is a non-GMO, gluten-free, vegan, and Halal certified ingredient. 

Berriotics™ is a trademark of Fermedics BV.


Berriotics™ FORMULATION PRINCIPLES AND RATIONALE

Berriotics™ is a complementary gut-brain health ingredient. In other words, it's included to complement other ingredients in a formula designed to support gut health, brain health, or both. Berries are a food category associated with both gut health [1] and brain health benefits [2] (so the berries in Berriotics™ are gut-brain support foods). But there’s other reasons that make Berriotics™ a great choice for a gut-brain support formula. Berriotics™ contains prebiotic fibers and microfibers that can be used as “food” by gut microbiota; it also contains berry polyphenols that are prebiotic-like, since they are metabolized and used by gut bacteria. We think these attributes make it a perfect choice to combine with other prebiotic fibers, helping to create a diverse and varied food supply for a healthy gut microbiota.* There are three distinct categories of “biotics” that can be used to positively modulate the health of the gut microbiota—prebiotics, probiotics, and postbiotics [3].* Based on the current expert consensus definition [4], Berriotics™ fits into the postbiotic category. It contains inactivated cells from organisms used to ferment it, as well as compounds and metabolites produced during fermentation. We choose our suggested serving to supply more than 500 million cells of inactivated Lactobacillus plantarum. This amount was selected to complement the other prebiotic, probiotic, and postbiotic ingredients in our synbiotic formula.  


KEY MECHANISMS

Supports gastrointestinal health and the gut microbiota*

Supports a healthy gut microbiota* [5–38,38–55]

Supports healthy SCFA production* [5–11,14,16,21,22,26–28,37,38,38,41,44,47,53,56–63] 

Supports urolithin A production* [64,64–67]

Supports colorectal functions* [41,43,44,58,59,62,68–78]

Supports healthy gastrointestinal motility* [79] 

Supports healthy intestinal barrier functions* [22,28,29,36,37,56,70,80–86]

Supports normal tight junction proteins* [29,37,70]

Supports optimal gut mucosal immunity* [82,87–92]

Supports gut-immune axis* [20,22,24,28,29,36,36,41,56,70,72,74,75,82–85,92–96] 

Supports gut-liver axis* [50,53]


Supports healthy brain function*

Supports healthy cognitive function* [63,97–107]

Supports healthy biobehavioral responses to stress* [108–110] 

Supports healthy brain antioxidant defenses* [111–115]

Supports normal neuroprotective functions* [63,114,116–126] [101,102,127]

Supports normal neuroplasticity functions* [122]

Supports neuron health and neurotransmission* [128]

Supports optimal brain energy metabolism* [129]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]L. Lavefve, L.R. Howard, F. Carbonero, Food Funct. 11 (2020) 45–65.

[2]S.L. Gardener, S.R. Rainey-Smith, M. Weinborn, C.P. Bondonno, R.N. Martins, Front. Aging Neurosci. 13 (2021) 640381.

[3]J. Żółkiewicz, A. Marzec, M. Ruszczyński, W. Feleszko, Nutrients 12 (2020).

[4]S. Salminen, M.C. Collado, A. Endo, C. Hill, S. Lebeer, E.M.M. Quigley, M.E. Sanders, R. Shamir, J.R. Swann, H. Szajewska, G. Vinderola, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 649–667.

[5]F. Bianchi, N.P. Lopes, M.A.T. Adorno, I.K. Sakamoto, M.I. Genovese, S.M.I. Saad, K. Sivieri, Int. J. Food Sci. Nutr. 70 (2019) 182–194.

[6]F.N.D.D. Menezes, F.H.C. de Melo, A.R.S. Vieira, É.T.C. Almeida, M.S. Lima, J.S. Aquino, A. Gomez-Zavaglia, M. Magnani, E.L. de Souza, J. Appl. Microbiol. 130 (2021) 1323–1336.

[7]A.D.S. Vieira, C.B. de Souza, M. Padilha, E.G. Zoetendal, H. Smidt, S.M.I. Saad, K. Venema, Appl. Microbiol. Biotechnol. 105 (2021) 3771–3785.

[8]K.S. Batista, A.F. Alves, M.D.S. Lima, L.A. da Silva, P.P. Lins, J.A. de Sousa Gomes, A.S. Silva, L.T. Toscano, B.R.L. de Albuquerque Meireles, A.M.T. de Magalhães Cordeiro, M.L. da Conceição, E.L. de Souza, J. de S. Aquino, Br. J. Nutr. 119 (2018) 30–41.

[9]T.-G. Hu, P. Wen, H.-Z. Fu, G.-Y. Lin, S.-T. Liao, Y.-X. Zou, Food Funct. 10 (2019) 1513–1528.

[10]C. Chen, L.-J. You, Q. Huang, X. Fu, B. Zhang, R.-H. Liu, C. Li, Food Funct. 9 (2018) 3732–3742.

[11]C. Chen, Q. Huang, X. Fu, R.H. Liu, Food Funct. 7 (2016) 4637–4643.

[12]V. Renaud, V.P. Houde, G. Pilon, T.V. Varin, C. Roblet, A. Marette, Y. Boutin, L. Bazinet, Int. J. Mol. Sci. 22 (2021).

[13]T. Gao, M. Hou, B. Zhang, X. Pan, C. Liu, C. Sun, M. Jia, S. Lin, K. Xiong, A. Ma, Food Funct. 12 (2021) 6878–6888.

[14]A. Tamargo, C. Cueva, D. Taladrid, C. Khoo, M.V. Moreno-Arribas, B. Bartolomé, D. González de Llano, Food Chem. 368 (2022) 130871.

[15]T.J. Straub, W.-C. Chou, A.L. Manson, H.L. Schreiber 4th, B.J. Walker, C.A. Desjardins, S.B. Chapman, K.L. Kaspar, O.J. Kahsai, E. Traylor, K.W. Dodson, M.A.J. Hullar, S.J. Hultgren, C. Khoo, A.M. Earl, BMC Microbiol. 21 (2021) 53.

[16]J. Liu, W. Hao, Z. He, E. Kwek, H. Zhu, N. Ma, K.Y. Ma, Z.-Y. Chen, Eur. J. Nutr. 60 (2021) 2735–2746.

[17]B.S.-Y. Choi, T.V. Varin, P. St-Pierre, G. Pilon, A. Tremblay, A. Marette, Food Chem. Toxicol. 146 (2020) 111832.

[18]M.-C. Rodríguez-Daza, M. Roquim, S. Dudonné, G. Pilon, E. Levy, A. Marette, D. Roy, Y. Desjardins, Front. Microbiol. 11 (2020) 2032.

[19]K. O’Connor, M. Morrissette, P. Strandwitz, M. Ghiglieri, M. Caboni, H. Liu, C. Khoo, A. D’Onofrio, K. Lewis, PLoS One 14 (2019) e0224836.

[20]X. Cai, Y. Han, M. Gu, M. Song, X. Wu, Z. Li, F. Li, T. Goulette, H. Xiao, Food Funct. 10 (2019) 6331–6341.

[21]J. Rodríguez-Morató, N.R. Matthan, J. Liu, R. de la Torre, C.-Y.O. Chen, J. Nutr. Biochem. 62 (2018) 76–86.

[22]D.P. Singh, S. Singh, V. Bijalwan, V. Kumar, P. Khare, R.K. Baboota, P. Singh, R.K. Boparai, J. Singh, K.K. Kondepudi, K. Chopra, M. Bishnoi, Eur. J. Nutr. 57 (2018) 2897–2911.

[23]E. Özcan, J. Sun, D.C. Rowley, D.A. Sela, Appl. Environ. Microbiol. 83 (2017).

[24]F.F. Anhê, D. Roy, G. Pilon, S. Dudonné, S. Matamoros, T.V. Varin, C. Garofalo, Q. Moine, Y. Desjardins, E. Levy, A. Marette, Gut 64 (2015) 872–883.

[25]C.C. Neto, B.M. Mortzfeld, J.R. Turbitt, S.K. Bhattarai, V. Yeliseyev, N. DiBenedetto, L. Bry, V. Bucci, Microb. Cell Fact. 8 (2021) 131–142.

[26]J.F. Garcia-Mazcorro, N.N. Lage, S. Mertens-Talcott, S. Talcott, B. Chew, S.E. Dowd, J.R. Kawas, G.D. Noratto, PeerJ 6 (2018) e4195.

[27]X. Liu, D.A. Martin, J.C. Valdez, S. Sudakaran, F. Rey, B.W. Bolling, Food Chem. 359 (2021) 129831.

[28]Y. Li, I.S. Nguepi Tsopmejio, Z. Diao, H. Xiao, X. Wang, Z. Jin, H. Song, J. Ethnopharmacol. 292 (2022) 115190.

[29]Y. Kong, T. Yan, Y. Tong, H. Deng, C. Tan, M. Wan, M. Wang, X. Meng, Y. Wang, J. Agric. Food Chem. 69 (2021) 3312–3325.

[30]G. Istas, E. Wood, M. Le Sayec, C. Rawlings, J. Yoon, V. Dandavate, D. Cera, S. Rampelli, A. Costabile, E. Fromentin, A. Rodriguez-Mateos, Am. J. Clin. Nutr. 110 (2019) 316–329.

[31]Y. Zhao, X. Liu, Y. Zheng, W. Liu, C. Ding, Sci. Rep. 11 (2021) 20558.

[32]C. Chen, X. Yang, S. Liu, M. Zhang, C. Wang, X. Xia, Y. Lou, H. Xu, Food Funct. 12 (2021) 6254–6270.

[33]Y. Zhu, J.-Y. Zhang, Y.-L. Wei, J.-Y. Hao, Y.-Q. Lei, W.-B. Zhao, Y.-H. Xiao, A.-D. Sun, Nutr. Metab. 17 (2020) 54.

[34]W. Yu, J. Gao, R. Hao, J. Yang, J. Wei, J. Food Sci. Technol. 58 (2021) 1511–1523.

[35]T. Wu, C. Grootaert, J. Pitart, N.K. Vidovic, S. Kamiloglu, S. Possemiers, M. Glibetic, G. Smagghe, K. Raes, T. Van de Wiele, J. Van Camp, Mol. Nutr. Food Res. 62 (2018) e1800607.

[36]T. Taira, S. Yamaguchi, A. Takahashi, Y. Okazaki, A. Yamaguchi, H. Sakaguchi, H. Chiji, J. Clin. Biochem. Nutr. 57 (2015) 212–216.

[37]T. Wu, X. Chu, Y. Cheng, S. Tang, D. Zogona, S. Pan, X. Xu, Foods 10 (2021).

[38]G. Jakobsdottir, N. Blanco, J. Xu, S. Ahrné, G. Molin, O. Sterner, M. Nyman, J. Nutr. Metab. 2013 (2013) 202534.

[39]J.F. Garcia-Mazcorro, R. Pedreschi, B. Chew, S.E. Dowd, J.R. Kawas, G. Noratto, J. Microbiol. Biotechnol. 28 (2018) 1247–1259.

[40]Z. Ezzat-Zadeh, S.M. Henning, J. Yang, S.L. Woo, R.-P. Lee, J. Huang, G. Thames, I. Gilbuena, C.-H. Tseng, D. Heber, Z. Li, Nutr. Res. 85 (2021) 60–70.

[41]Y. Han, M. Song, M. Gu, D. Ren, X. Zhu, X. Cao, F. Li, W. Wang, X. Cai, B. Yuan, T. Goulette, G. Zhang, H. Xiao, J. Agric. Food Chem. 67 (2019) 9168–9177.

[42]C. Petersen, U.D. Wankhade, D. Bharat, K. Wong, J.E. Mueller, S.V. Chintapalli, B.D. Piccolo, T. Jalili, Z. Jia, J.D. Symons, K. Shankar, P.V. Anandh Babu, J. Nutr. Biochem. 66 (2019) 63–69.

[43]A.-L. Molan, Z. Liu, G. Plimmer, Phytother. Res. 28 (2014) 416–422.

[44]H.-J. Yang, T. Zhang, X.-G. Wu, M.-J. Kim, Y.-H. Kim, E.-S. Yang, Y.-S. Yoon, S. Park, Antioxidants (Basel) 10 (2021).

[45]H. Song, X. Shen, F. Wang, Y. Li, X. Zheng, Mol. Nutr. Food Res. 65 (2021) e2001090.

[46]J. Overall, S.A. Bonney, M. Wilson, A. Beermann, M.H. Grace, D. Esposito, M.A. Lila, S. Komarnytsky, Int. J. Mol. Sci. 18 (2017).

[47]G. Paturi, C.A. Butts, J.A. Monro, D. Hedderley, Plant Foods Hum. Nutr. 73 (2018) 54–60.

[48]L. Cao, S.G. Lee, M.M. Melough, J.R. Sakaki, K.R. Maas, S.I. Koo, O.K. Chun, Nutrients 12 (2020).

[49]K. Chen, X. Wei, M. Kortesniemi, R. Pariyani, Y. Zhang, B. Yang, Food Res. Int. 153 (2022) 110978.

[50]H. Nakano, S. Wu, K. Sakao, T. Hara, J. He, S. Garcia, K. Shetty, D.-X. Hou, Nutrients 12 (2020).

[51]L. Wang, G. Jiang, N. Jing, X. Liu, Q. Li, W. Liang, Z. Liu, Food Funct. 11 (2020) 3180–3190.

[52]H.-Y. Liu, T.B. Walden, D. Ahl, M. Nyman, S. Bertilsson, M. Phillipson, L. Holm, Mol. Nutr. Food Res. 63 (2019) e1900117.

[53]H.-Y. Liu, T.B. Walden, D. Cai, D. Ahl, S. Bertilsson, M. Phillipson, M. Nyman, L. Holm, Nutrients 11 (2019).

[54]J. Li, T. Wu, N. Li, X. Wang, G. Chen, X. Lyu, Food Funct. 10 (2019) 333–343.

[55]E. Päivärinta, M. Niku, J. Maukonen, M. Storvik, A. Heiman-Lindh, M. Saarela, A.-M. Pajari, M. Mutanen, Nutr. Res. 36 (2016) 1285–1297.

[56]D. Jin, T. Liu, W. Dong, Y. Zhang, S. Wang, R. Xie, B. Wang, H. Cao, Oncotarget 8 (2017) 97787–97800.

[57]V. Núñez-Gómez, M.J. Periago, I. Navarro-González, M.P. Campos-Cava, N. Baenas, R. González-Barrio, Plant Foods Hum. Nutr. 76 (2021) 494–500.

[58]B. Fotschki, J. Juśkiewicz, A. Jurgoński, M. Kosmala, J. Milala, Z. Zduńczyk, J. Markowski, Food Res. Int. 120 (2019) 399–406.

[59]B. Fotschki, J. Juśkiewicz, M. Sójka, A. Jurgoński, Z. Zduńczyk, Molecules 20 (2015) 22848–22862.

[60]M. Kosmala, Z. Zduńczyk, K. Kołodziejczyk, E. Klimczak, J. Juśkiewicz, P. Zduńczyk, Eur. J. Nutr. 53 (2014) 521–532.

[61]M. Kosmala, Z. Zduńczyk, E. Karlińska, J. Juśkiewicz, Food Res. Int. 64 (2014) 752–761.

[62]A. Jurgoński, J. Juśkiewicz, Z. Zduńczyk, P. Matusevicius, K. Kołodziejczyk, Eur. J. Nutr. 53 (2014) 1603–1613.

[63]J. Li, R. Zhao, Y. Jiang, Y. Xu, H. Zhao, X. Lyu, T. Wu, Food Funct. 11 (2020) 1572–1584.

[64]F.A. Tomás-Barberán, R. García-Villalba, A. González-Sarrías, M.V. Selma, J.C. Espín, J. Agric. Food Chem. 62 (2014) 6535–6538.

[65]R. Puupponen-Pimiä, T. Seppänen-Laakso, M. Kankainen, J. Maukonen, R. Törrönen, M. Kolehmainen, T. Leppänen, E. Moilanen, L. Nohynek, A.-M. Aura, K. Poutanen, F.A. Tómas-Barberán, J.C. Espín, K.-M. Oksman-Caldentey, Mol. Nutr. Food Res. 57 (2013) 2258–2263.

[66]R. González-Barrio, G. Borges, W. Mullen, A. Crozier, J. Agric. Food Chem. 58 (2010) 3933–3939.

[67]P. Truchado, M. Larrosa, M.T. García-Conesa, B. Cerdá, M.L. Vidal-Guevara, F.A. Tomás-Barberán, J.C. Espín, J. Agric. Food Chem. 60 (2012) 5749–5754.

[68]S. Dobani, C. Latimer, G.J. McDougall, J.W. Allwood, G. Pereira-Caro, J.M. Moreno-Rojas, N.G. Ternan, L.K. Pourshahidi, R. Lawther, K.M. Tuohy, D. Del Rio, G. O’Connor, I. Rowland, T.M. Almutairi, A. Crozier, C.I.R. Gill, Redox Biol 40 (2021) 101862.

[69]S. Bibi, M. Du, M.-J. Zhu, J. Nutr. 148 (2018) 667–674.

[70]S. Bibi, Y. Kang, M. Du, M.-J. Zhu, J. Nutr. Biochem. 51 (2018) 40–46.

[71]B. Fotschki, J. Juśkiewicz, A. Jurgoński, N. Rigby, M. Sójka, K. Kołodziejczyk, A. Mackie, Z. Zduńczyk, J. Nutr. Biochem. 46 (2017) 13–20.

[72]N. Shi, S.K. Clinton, Z. Liu, Y. Wang, K.M. Riedl, S.J. Schwartz, X. Zhang, Z. Pan, T. Chen, Nutrients 7 (2015) 1696–1715.

[73]E. Lippert, P. Ruemmele, F. Obermeier, S. Goelder, C. Kunst, G. Rogler, N. Dunger, H. Messmann, A. Hartmann, E. Endlicher, Digestion 95 (2017) 275–280.

[74]H. Piberger, A. Oehme, C. Hofmann, A. Dreiseitel, P.G. Sand, F. Obermeier, J. Schoelmerich, P. Schreier, G. Krammer, G. Rogler, Mol. Nutr. Food Res. 55 (2011) 1724–1729.

[75]L. Biedermann, J. Mwinyi, M. Scharl, P. Frei, J. Zeitz, G.A. Kullak-Ublick, S.R. Vavricka, M. Fried, A. Weber, H.-U. Humpf, S. Peschke, A. Jetter, G. Krammer, G. Rogler, J. Crohns. Colitis 7 (2013) 271–279.

[76]M. Misikangas, A.-M. Pajari, E. Päivärinta, S.I. Oikarinen, J. Rajakangas, M. Marttinen, H. Tanayama, R. Törrönen, M. Mutanen, J. Nutr. 137 (2007) 2285–2290.

[77]D. Cooke, M. Schwarz, D. Boocock, P. Winterhalter, W.P. Steward, A.J. Gescher, T.H. Marczylo, Int. J. Cancer 119 (2006) 2213–2220.

[78]G. Lala, M. Malik, C. Zhao, J. He, Y. Kwon, M.M. Giusti, B.A. Magnuson, Nutr. Cancer 54 (2006) 84–93.

[79]B. Miladinovic, S. Brankovic, M. Kostic, M. Milutinovic, N. Kitic, K. Šavikin, D. Kitic, Med. Princ. Pract. 27 (2018) 179–185.

[80]Z. Qian, Z. Wu, L. Huang, H. Qiu, L. Wang, L. Li, L. Yao, K. Kang, J. Qu, Y. Wu, J. Luo, J.J. Liu, Y. Yang, W. Yang, D. Gou, Sci. Rep. 5 (2015) 17348.

[81]X. Wong, C. Carrasco-Pozo, E. Escobar, P. Navarrete, F. Blachier, M. Andriamihaja, A. Lan, D. Tomé, M.J. Cires, E. Pastene, M. Gotteland, J. Agric. Food Chem. 64 (2016) 3574–3583.

[82]J.F. Pierre, A.F. Heneghan, R.P. Feliciano, D. Shanmuganayagam, D.A. Roenneburg, C.G. Krueger, J.D. Reed, K.A. Kudsk, JPEN J. Parenter. Enteral Nutr. 37 (2013) 401–409.

[83]S. Valcheva-Kuzmanova, A. Kuzmanov, V. Kuzmanova, M. Tzaneva, Food Chem. Toxicol. 113 (2018) 33–39.

[84]R. Pei, J. Liu, D.A. Martin, J.C. Valdez, J. Jeffery, G.A. Barrett-Wilt, Z. Liu, B.W. Bolling, Nutrients 11 (2019).

[85]S.-H. Kang, Y.-D. Jeon, K.-H. Moon, J.-H. Lee, D.-G. Kim, W. Kim, H. Myung, J.-S. Kim, H.-J. Kim, K.-S. Bang, J.-S. Jin, J. Med. Food 20 (2017) 667–675.

[86]B.J. Lee, T.R. Flood, A.M. Hiles, E.F. Walker, L.E.V. Wheeler, K.M. Ashdown, M.E.T. Willems, R. Costello, L.D. Greisler, P.A. Romano, G.W. Hill, M.R. Kuennen, Int. J. Sport Nutr. Exerc. Metab. (2022) 1–10.

[87]A. Howell, D. Souza, M. Roller, E. Fromentin, Nat. Prod. Commun. 10 (2015) 1215–1218.

[88]I. Singh, L.K. Gautam, I.R. Kaur, Int. Urol. Nephrol. 48 (2016) 1379–1386.

[89]H. Liu, A.B. Howell, D.J. Zhang, C. Khoo, Food Funct. 10 (2019) 7645–7652.

[90]G. Tempera, S. Corsello, C. Genovese, F.E. Caruso, D. Nicolosi, Int. J. Immunopathol. Pharmacol. 23 (2010) 611–618.

[91]A. Occhipinti, A. Germano, M.E. Maffei, Urol. J. 13 (2016) 2640–2649.

[92]J.F. Pierre, A.F. Heneghan, R.P. Feliciano, D. Shanmuganayagam, C.G. Krueger, J.D. Reed, K.A. Kudsk, JPEN J. Parenter. Enteral Nutr. 38 (2014) 107–114.

[93]X. Xiao, J. Kim, Q. Sun, D. Kim, C.-S. Park, T.-S. Lu, Y. Park, Food Chem. 167 (2015) 438–446.

[94]M.P. Nantz, C.A. Rowe, C. Muller, R. Creasy, J. Colee, C. Khoo, S.S. Percival, Nutr. J. 12 (2013) 161.

[95]D. Gajić, T. Saksida, I. Koprivica, L. Šenerović, I. Morić, K. Šavikin, N. Menković, N. Pejnović, I. Stojanović, Food Funct. 11 (2020) 7793–7803.

[96]R. Pei, D.A. Martin, J.C. Valdez, J. Liu, R.L. Kerby, F.E. Rey, J.A. Smyth, Z. Liu, B.W. Bolling, Mol. Nutr. Food Res. 63 (2019) e1800985.

[97]N.G. Kolosova, T.V. Shcheglova, S.V. Sergeeva, L.V. Loskutova, Neurobiol. Aging 27 (2006) 1289–1297.

[98]M.Y. Yamakawa, K. Uchino, Y. Watanabe, T. Adachi, M. Nakanishi, H. Ichino, K. Hongo, T. Mizobata, S. Kobayashi, K. Nakashima, Y. Kawata, Nutr. Neurosci. 19 (2016) 32–42.

[99]M. Matysek, K. Borowiec, D. Szwajgier, R. Szalak, M.B. Arciszewski, Ann. Agric. Environ. Med. 28 (2021) 430–436.

[100]K. Borowiec, M. Matysek, D. Szwajgier, G. Biała, M. Kruk-Słomka, R. Szalak, J. Ziętek, M.B. Arciszewski, Z. Targoński, Pol. J. Vet. Sci. 22 (2019) 481–487.

[101]H. Wen, H. Cui, H. Tian, X. Zhang, L. Ma, C. Ramassamy, J. Li, Foods 10 (2020).

[102]E. Daskalova, S. Delchev, M. Topolov, S. Dimitrova, Y. Uzunova, S. Valcheva-Kuzmanova, M. Kratchanova, L. Vladimirova-Kitova, P. Denev, Food Chem. Toxicol. 132 (2019) 110674.

[103]S.V. Valcheva-Kuzmanova, M.T. Eftimov, R.E. Tashev, I.P. Belcheva, S.P. Belcheva, Folia Med. 56 (2014) 199–203.

[104]H.Y. Lee, J.B. Weon, Y.S. Jung, N.Y. Kim, M.K. Kim, C.J. Ma, Evid. Based. Complement. Alternat. Med. 2016 (2016) 6145926.

[105]J.A. Joseph, B. Shukitt-Hale, N.A. Denisova, R.L. Prior, G. Cao, A. Martin, G. Taglialatela, P.C. Bickford, J. Neurosci. 18 (1998) 8047–8055.

[106]M.G. Miller, N. Thangthaeng, G.A. Rutledge, T.M. Scott, B. Shukitt-Hale, Br. J. Nutr. 126 (2021) 253–263.

[107]N. Gibson, D. Baker, A. Sharples, A. Braakhuis, Antioxidants (Basel) 9 (2020).

[108]B. Kumar, V. Arora, A. Kuhad, K. Chopra, Phytother. Res. 26 (2012) 488–497.

[109]M. Tomić, Đ. Ignjatović, G. Tovilović-Kovačević, D. Krstić-Milošević, S. Ranković, T. Popović, M. Glibetić, Food Funct. 7 (2016) 3111–3120.

[110]S. Valcheva-Kuzmanova, M. Zhelyazkova-Savova, Methods Find. Exp. Clin. Pharmacol. 31 (2009) 651–654.

[111]T. Ochiishi, M. Kaku, T. Kajsongkram, K. Thisayakorn, Genes Cells 26 (2021) 861–873.

[112]J. Wattanathorn, N. Palachai, W. Thukham-Mee, S. Muchimapura, Oxid. Med. Cell. Longev. 2020 (2020) 3096826.

[113]N. Palachai, J. Wattanathorn, S. Muchimapura, W. Thukham-Mee, Oxid. Med. Cell. Longev. 2020 (2020) 5305437.

[114]S.K. Shin, J.-M. Yoo, F.Y. Li, S.Y. Baek, M.R. Kim, Nutr. Neurosci. 24 (2021) 940–950.

[115]R.R. Klosterhoff, L.K.S. Kanazawa, A.L.D.M. Furlanetto, J.V.C. Peixoto, C.R. Corso, E.R. Adami, M. Iacomini, R.T.H. Fogaça, A. Acco, S.M.S.C. Cadena, R. Andreatini, L.M.C. Cordeiro, Int. J. Biol. Macromol. 109 (2018) 1147–1153.

[116]D. Liu, D. Du, Neurochem. Res. 45 (2020) 2009–2019.

[117]S. Kawvised, J. Wattanathorn, W. Thukham-Mee, Oxid. Med. Cell. Longev. 2017 (2017) 2962316.

[118]P. Kaewkaen, T. Tong-Un, J. Wattanathorn, S. Muchimapura, W. Kaewrueng, S. Wongcharoenwanakit, Evid. Based. Complement. Alternat. Med. 2012 (2012) 263520.

[119]H.G. Kim, M.S. Ju, J.S. Shim, M.C. Kim, S.-H. Lee, Y. Huh, S.Y. Kim, M.S. Oh, Br. J. Nutr. 104 (2010) 8–16.

[120]B. Shukitt-Hale, R.L. Galli, V. Meterko, A. Carey, D.F. Bielinski, T. McGhie, J.A. Joseph, Age 27 (2005) 49–57.

[121]M. Kurpik, P. Zalewski, M. Kujawska, M. Ewertowska, E. Ignatowicz, J. Cielecka-Piontek, J. Jodynis-Liebert, Nutrients 13 (2021).

[122]A.N. Carey, G.I. Pintea, S. Van Leuven, K.R. Gildawie, L. Squiccimara, E. Fine, A. Rovnak, M. Harrington, Nutr. Neurosci. 24 (2021) 406–416.

[123]S.M. Poulose, D.F. Bielinski, K.L. Carrihill-Knoll, B.M. Rabin, B. Shukitt-Hale, Brain Res. 1593 (2014) 9–18.

[124]M. Matysek, S. Mozel, R. Szalak, A. Zacharko-Siembida, K. Obszańska, M.B. Arciszewski, Pol. J. Vet. Sci. 20 (2017) 313–319.

[125]S. Vepsäläinen, H. Koivisto, E. Pekkarinen, P. Mäkinen, G. Dobson, G.J. McDougall, D. Stewart, A. Haapasalo, R.O. Karjalainen, H. Tanila, M. Hiltunen, J. Nutr. Biochem. 24 (2013) 360–370.

[126]A. Virel, A. Rehnmark, G. Orädd, S. Olmedo-Díaz, E. Faergemann, I. Strömberg, Eur. J. Neurosci. 42 (2015) 2761–2771.

[127]J. Wei, G. Zhang, X. Zhang, D. Xu, J. Gao, J. Fan, Z. Zhou, J. Agric. Food Chem. 65 (2017) 5973–5984.

[128]H.G. Kim, M.S. Oh, Br. J. Nutr. 110 (2013) 86–94.

[129]D.D. Leffa, G.T. Rezin, F. Daumann, L.M. Longaretti, A.L.F. Dajori, L.M. Gomes, M.C. Silva, E.L. Streck, V.M. de Andrade, Mol. Neurobiol. 54 (2017) 954–963.