Mucuna pruriens Seed


Velvet bean | Monkey tamarind | Cowage | Cowitch | Lacuna bean | Lyon bean


  • Supports brain function *
  • Supports neuroprotection *
  • Supports antioxidant defenses *


Mucuna pruriens, also known as velvet bean, is a legume that is used as food in some parts of Southeast Asia and has been used in Unani and Ayurvedic traditional medicine. M. pruriens seeds (i.e., the beans) contain flavonoids, saponins, lectins, and alkaloids. The beans are one of the best sources of the amino acid L-3,4-dihydroxyphenylalanine (L-DOPA). Fava beans and green beans are other food sources of L-DOPA. Because L-DOPA is the direct precursor of the neurotransmitter dopamine, M. pruriens has been used as a nootropic for brain support. Dopamine is one of the main neurotransmitters in the brain. It participates in several important brain functions, most notably reward, motivation, pleasure, focus, cognitive flexibility, emotional resilience, and motor control. Healthy functioning of dopamine signaling is fundamental for healthy cognitive function and emotional drive [1–3]. 


Mucuna Pruriens Seed Extract is standardized to contain 50% L-DOPA. 

Mucuna Pruriens Seed Extract is non-GMO, Kosher, Halal, gluten-free, and vegan. 


The dose of Mucuna pruriens extract was selected based on the dose of L-DOPA we wanted to include in our formulation. This extract is standardized for 50% L-DOPA, meaning that each 100 milligrams of M. pruriens seed extract provides 50 milligrams of L-DOPA. This amount of dietary L-DOPA is less than what would be consumed by eating a small serving of Fava or green beans [4]. Neurohacker Collective believes M. pruriens may be complementary with other ingredients used with it for supporting dopamine signaling and brain health. 


Brain function

  • Supports dopamine levels and dopaminergic neurotransmission [3,5]
  • Supports noradrenaline levels [3,5]
  • Supports serotonin levels [3,5]
  • Supports cognitive health [6]
  • Supports neuroprotective functions [6–9]
  • Supports neural antioxidant defenses [10]
  • Counters neural ROS levels and oxidative stress [7,11] 
  • Supports growth hormone levels [12] 
  • Supports neural immune signaling [9,13,14]

Stress and mood

  • Supports healthy behavioral and physiological stress responses [9,15]
  • Supports healthy stress hormone levels [12,16]
  • Supports healthy behavioral responses [9,17]

General health

  • Supports healthy blood pressure [18,19]
  • Supports healthy blood glucose levels [20–22]
  • Supports mitochondrial function [5,23,24]
  • Supports antioxidant defenses [6,10,11,15,23,24] 

Male reproductive health

  • Supports healthy testosterone levels [25,26]
  • Supports sperm count and motility [15,23–25,27]


[1]L.R. Lampariello, A. Cortelazzo, R. Guerranti, C. Sticozzi, G. Valacchi, Afr. J. Tradit. Complement. Altern. Med. 2 (2012) 331–339.

[2]H. Pulikkalpura, R. Kurup, P.J. Mathew, S. Baby, Sci. Rep. 5 (2015) 11078.

[3]P. De Deurwaerdère, G. Di Giovanni, M.J. Millan, Prog. Neurobiol. 151 (2017) 57–100.

[4]M. Rijntjes, Parkinson’s Disease 2019 (2019) 1–9.

[5]B.V. Manyam, M. Dhanasekaran, T.A. Hare, Phytother. Res. 18 (2004) 706–712.

[6]V.S. Nayak, N. Kumar, A.S. D’Souza, S.S. Nayak, S.P. Cheruku, K.S.R. Pai, Neuroreport 28 (2017) 1195–1201.

[7]S.L. Johnson, H.Y. Park, N.A. DaSilva, D.A. Vattem, H. Ma, N.P. Seeram, Nutrients 10 (2018).

[8]P. Concessao, L.K. Bairy, A.P. Raghavendra, Vet World 13 (2020) 1555–1566.

[9]R.L. Tavares, M.H.A. de Vasconcelos, M.L. da V. Dutra, A.B. D’Oliveira, M.D.S. Lima, M.G. da S.S. Salvadori, R. de A. Pereira, A.F. Alves, Y.M. do Nascimento, J.F. Tavares, O. Guzman-Quevedo, J. de S. Aquino, Molecules 25 (2020).

[10]S.K. Yadav, J. Prakash, S. Chouhan, S.P. Singh, Neurochem. Int. 62 (2013) 1039–1047.

[11]M. Dhanasekaran, B. Tharakan, B.V. Manyam, Phytother. Res. 22 (2008) 6–11.

[12]G. Boden, L.E. Lundy, O.E. Owen, Neuroendocrinology 10 (1972) 309–315.

[13]S.N. Rai, H. Birla, W. Zahra, S.S. Singh, S.P. Singh, J. Chem. Neuroanat. 85 (2017) 27–35.

[14]A. Rachsee, N. Chiranthanut, P. Kunnaja, S. Sireeratawong, P. Khonsung, S. Chansakaow, A. Panthong, J. Ethnopharmacol. 267 (2021) 113518.

[15]K.K. Shukla, A.A. Mahdi, M.K. Ahmad, S.P. Jaiswar, S.N. Shankwar, S.C. Tiwari, Evid. Based. Complement. Alternat. Med. 7 (2010) 137–144.

[16]T. Müller, J. Welnic, S. Muhlack, J. Neural Transm. 114 (2007) 347–350.

[17]D.G. Rana, V.J. Galani, Ayu 35 (2014) 90–97.

[18]L. Chel-Guerrero, S. Galicia-Martínez, J.J. Acevedo-Fernández, J. Santaolalla-Tapia, D. Betancur-Ancona, J. Med. Food 20 (2017) 37–45.

[19]M.Y. Khan, V. Kumar, J. Complement. Integr. Med. 14 (2017).

[20]S.O. Majekodunmi, A.A. Oyagbemi, S. Umukoro, O.A. Odeku, Asian Pac. J. Trop. Med. 4 (2011) 632–636.

[21]S.S. Rathi, J.K. Grover, V. Vats, Phytother. Res. 16 (2002) 236–243.

[22]A. Bhaskar, V.G. Vidhya, M. Ramya, Fitoterapia 79 (2008) 539–543.

[23]S. Suresh, E. Prithiviraj, N.V. Lakshmi, M.K. Ganesh, L. Ganesh, S. Prakash, J. Ethnopharmacol. 145 (2013) 32–41.

[24]A.P. Singh, S. Sarkar, M. Tripathi, S. Rajender, PLoS One 8 (2013) e54655.

[25]K.K. Shukla, A.A. Mahdi, M.K. Ahmad, S.N. Shankhwar, S. Rajender, S.P. Jaiswar, Fertil. Steril. 92 (2009) 1934–1940.

[26]S. Suresh, S. Prakash, J. Sex. Med. 9 (2012) 3066–3078.

[27]M.K. Ahmad, A.A. Mahdi, K.K. Shukla, N. Islam, S.P. Jaiswar, S. Ahmad, Fertil. Steril. 90 (2008) 627–635.