BioVin® French Red Grapes Extract

BioVin® French Red Grapes Extract Common Name

Grape Pomace Extract

Top Benefits of BioVin®

  • Supports healthy aging*
  • Supports exercise performance*
  • Supports metabolic heath and healthy weight*
  • Supports mitochondrial health*
  • Supports cellular responses and antioxidant defenses*
  • Support cardiovascular function*
  • Supports brain function*
  • Supports healthy gut microbiota*

What is BioVin®?

BioVin® is made from the juice, seeds, and skins of French red grapes. It provides a full spectrum of grape’s health-promoting compounds. Grape skins and seeds contain small amount of trans-resveratrol. This compound has been the subject of hundreds or pre-clinical and clinical research studies. While trans-resveratrol has received a great deal of research attention, grapes are more than one compound: They contain resveratrol derivatives (e.g., viniferins, polydatin) and polyphenol compounds (e.g., oligomeric proanthocyanidins, quercetin, gallic acids, catechins). These compounds have synergies with trans-resveratrol. We think it makes sense to use a full spectrum extract to capture these synergies.

Neurohacker’s BioVin® Sourcing

BioVin® is a full spectrum French red grape extract. Made from grape juice, seeds, and skins of Vitis vinifera, whole red grapes from Rhone Valley, Southern France.

Standardized to contain 5% trans-resveratrol and not less than 40% grape oligomeric proanthocyanidins.

Non-GMO, Vegan 

BioVin® Dosing Principles and Rationale

When thinking about the dose of BioVin® there’s a few things to keep in mind. This grape extract has been standardized to contain 5% trans-resveratrol and not less than 40% oligomeric proanthocyanidins. The extract also has other compounds that naturally occur in grape juice, seeds, and skin. While trans-resveratrol is one of the reasons we use this extract, it’s the synergy of all of grape’s phytonutrients that is the story. Focusing only on the trans-resveratrol content misses the big picture. That said, we don’t view trans-resveratrol as a more is better compound. It might be better thought of as a hormetic substance; something that in low to moderate amounts helps promote an adaptive response to stress, but which doesn’t work as well at very high doses (see Neurohacker Dosing Principles). Our goal with trans-resveratrol, as with all many ingredient choices, is to select the lowest dose needed to produce desired benefits, especially in the context of other ingredient synergies. Studies have used resveratrol alone in doses as low as 10 mg … and doses of several grams. When used as part of a grape extract, the amount of resveratrol in the study has typically been less than 10 mg. When we choose our BioVin® dose the goal was to be at or above the low-dose resveratrol threshold, which we think of as being 10 mg. This allows us to also provide a meaningful dose of 80 mg per serving of oligomeric proanthocyanidins.

BioVin® Key Mechanisms 

Grape proanthocyanidins

Mitochondrial biogenesis

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) (1–5)
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF-1], NRF-2, mitochondrial transcription factor A [TFAM] (2, 3, 6–8) 

Mitochondrial structure and function

  • Supports mitochondrial DNA (mtDNA) (3)
  • Protects mitochondrial structure (4)
  • Protects from complex I-V inhibition (9–14)
  • Supports the activities of TCA cycle enzymes (13)
  • Supports β-oxidation (11)
  • Upregulates the NAD+ pool (15)

Signaling pathways

  • Upregulates AMPK signaling (3–5, 7, 11, 16–18)

Antioxidant defenses

  • Downregulates reactive oxygen species (ROS) levels and oxidative stress (4, 9, 10, 12, 14, 17)
  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) (2–5, 7, 9, 17)

Cellular signaling

  • Downregulates the expression of proinflammatory cytokines (tumor necrosis factor alpha [TNFα], interleukin-6 [IL-6], nuclear factor kappa B [NF-κB]) (7, 13, 19)

Metabolism

  • Supports healthy insulin sensitivity (17–20)
  • Upregulates the insulin signaling pathway (17)
  • Upregulates the glucose transporter GLUT4 (17, 21)

Body weight

  • Downregulates fat accumulation and blood/liver lipid levels (1, 9–11, 17, 19, 20)

Exercise performance

  • Supports endurance performance (22)

Cardiovascular function

  • Supports healthy blood pressure (23)
  • Supports vasodilation (23)

Gut microbiota

  • Regulates the composition of the gut microbiota (19, 24–28)
  • Supports gut barrier function (28–30)
  • Regulates gut oxidative stress (30, 31)

Healthy aging and longevity 

  • Upregulates SIRT-1 (2–5, 15)
  • Downregulates mTOR signaling (16)
  • Upregulates UCP-1 (1)
  • Extends lifespan (Drosophila melanogaster) (14)

Other

  • Protects liver structure and function (13)
  • Modulates the gut microbiota composition (19)
  • Modulates circadian rhythms (32, 33)

Synergies

  • Gynostemma pentaphyllum (in improving insulin sensitivity) (20)

Resveratrol

Mitochondrial biogenesis

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) (34–41)
  • Upregulates nuclear transcriptional factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF-1], NRF-2, mitochondrial transcription factor A [TFAM]) (35, 38, 40, 42)

Mitochondrial structure and function

  • Upregulates mitochondrial size and number (35, 37)
  • Upregulates inner mitochondrial membrane folding (cristae) (35)
  • Upregulates mitochondrial DNA (mtDNA) (35, 38, 39)
  • Supports mitochondrial membrane potential (38)
  • Upregulates citrate synthase (34, 35)
  • Upregulates ATP production (38, 40)
  • Upregulates NAD+ pool (38, 39, 43)
  • Upregulates components of the electron transport chain - complex I-V (38)
  • Supports β-oxidation (35, 41, 43, 44)

Signaling pathways

  • Upregulates AMPK signaling (34, 37–41, 43, 45, 46)
  • Upregulates liver kinase B1 (LKB1) signaling (38, 40)
  • Upregulates peroxisome proliferator-activated receptor alpha (PPARα) (35)
  • Downregulates peroxisome proliferator-activated receptor gamma (PPARγ) (41)
  • Upregulates estrogen-related receptor alpha (ERR α) (35, 39)
  • Upregulates forkhead transcription factor O 1 (FOXO1) (41)
  • Inhibits phosphodiesterase (PDE) 1 and 4  and activates adenylate cyclase  - upregulates cAMP levels (43, 47)

Antioxidant defenses

  • Downregulates reactive oxygen species (ROS) levels and oxidative stress (39, 41–43, 48–51)
  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) (52, 53)
  • Downregulates pro-oxidant enzymes (NADPH oxidase) (52, 53)

Insulin signaling

  • Supports healthy insulin sensitivity (34, 35, 37, 39, 46, 48, 54)

Body weight

  • Downregulates fat accumulation and blood/liver lipid levels (34, 35, 41)
  • Supports thermogenesis (35)
  • Upregulates adiponectin levels (41)

Cardiovascular function

  • Supports healthy vascular function (52–55)
  • Protects cardiac function (56)

Brain function

  • Supports cerebral blood flow (57)
  • Neuroprotective against neurotoxic agents (49, 50, 58)

Exercise performance

  • Supports endurance performance  (35)
  • Supports muscle structure and function (38, 59)
  • Supports glucose uptake in muscles (56)

Gut microbiota

  • Regulates the composition of the gut microbiota (60–66)
  • Regulates gut microbial metabolism (63)
  • Modulates gut microbial gene expression (63)
  • Supports gut barrier function (63)
  • Regulates gut cytokine signaling (66)

Healthy aging and longevity 

  • Upregulates SIRT1 (34, 36, 38, 41, 42, 45, 67, 68)
  • Upregulates mitochondrial uncoupling proteins UCP1, UCP2, and UCP3 (35, 39)
  • Upregulates Klotho (42, 68)
  • Downregulates mTOR signaling (37)
  • Delays age-related physiological changes (56)
  • Extends lifespan (mice on high-calorie diet, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae) (37, 55, 67, 69, 70)

Synergies

  • Apigenin
  • Piperine

REFERENCES 

1. C. Rodriguez Lanzi et al., J. Nutr. Biochem. 56, 224–233 (2018).
2. H. Asseburg et al., Neuromolecular Med. 18, 378–395 (2016).
3. L. Bao et al., Food Funct. 5, 1872–1880 (2014).
4. X. Cai, L. Bao, J. Ren, Y. Li, Z. Zhang, Food Funct. 7, 805–815 (2016).
5. L. Bao, X. Cai, Z. Zhang, Y. Li, Br. J. Nutr. 113, 35–44 (2015).
6. I. Pokkunuri, Q. Ali, M. Asghar, Oxid. Med. Cell. Longev. 2016, 6135319 (2016).
7. J. Lu et al., Food Chem. Toxicol. 116, 59–69 (2018).
8. S. G. Li et al., Biomed. Environ. Sci. 28, 272–280 (2015).
9. M. El Ayed, S. Kadri, M. Mabrouk, E. Aouani, S. Elkahoui, Lipids Health Dis. 17, 109 (2018).
10. D. Leonetti et al., Front. Pharmacol. 9, 406 (2018).
11. M. Yin et al., Mol. Med. Rep. 16, 2844–2850 (2017).
12. N. F. F. de Sales et al., Molecules. 23 (2018), doi:10.3390/molecules23030611.
13. S. Miltonprabu, Nazimabashir, V. Manoharan, Toxicol Rep. 3, 63–77 (2016).
14. J. Long, H. Gao, L. Sun, J. Liu, X. Zhao-Wilson, Rejuvenation Res. 12, 321–331 (2009).
15. G. Aragonès et al., Sci. Rep. 6, 24977 (2016).
16. L. Castillo-Pichardo, S. F. Dharmawardhane, Nutr. Cancer. 64, 1058–1069 (2012).
17. G. F. da Costa et al., Phytother. Res. 31, 1621–1632 (2017).
18. E. Casanova et al., J. Nutr. Biochem. 25, 1003–1010 (2014).
19. W. Liu et al., Mol. Nutr. Food Res. 61 (2017), doi:10.1002/mnfr.201601082.
20. H.-J. Zhang et al., J. Food Sci. 74, H1–7 (2009).
21. M. Aoun et al., Br. J. Nutr. 106, 491–501 (2011).
22. L. T. Toscano et al., Appl. Physiol. Nutr. Metab. 40, 899–906 (2015).
23. J.-K. Kim, K.-A. Kim, H.-M. Choi, S.-K. Park, C. L. Stebbins, J. Med. Food. 21, 445–453 (2018).
24. V. Nash et al., Food Res. Int. 113, 277–287 (2018).
25. S. Chacar et al., Antioxidants (Basel). 7 (2018), doi:10.3390/antiox7060075.
26. À. Casanova-Martí et al., Food Funct. 9, 1672–1682 (2018).
27. S. Chacar et al., J. Food Sci. 83, 246–251 (2018).
28. M. Van Hul et al., Am. J. Physiol. Endocrinol. Metab. 314, E334–E352 (2018).
29. K. Gil-Cardoso et al., J. Nutr. Biochem. 62, 35–42 (2018).
30. K. Gil-Cardoso et al., Mol. Nutr. Food Res. 61 (2017), doi:10.1002/mnfr.201601039.
31. P. Kuhn et al., PLoS One. 13, e0198716 (2018).
32. A. Ribas-Latre et al., Sci. Rep. 5, 10954 (2015).
33. A. Ribas-Latre et al., Mol. Nutr. Food Res. 59, 865–878 (2015).
34. S. Timmers et al., Cell Metab. 14, 612–622 (2011).
35. M. Lagouge et al., Cell. 127, 1109–1122 (2006).
36. T. D. Scribbans et al., Appl. Physiol. Nutr. Metab. 39, 1305–1313 (2014).
37. J. A. Baur et al., Nature. 444, 337–342 (2006).
38. N. L. Price et al., Cell Metab. 15, 675–690 (2012).
39. J.-H. Um et al., Diabetes. 59, 554–563 (2010).
40. B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104, 7217–7222 (2007).
41. J. M. Ajmo, X. Liang, C. Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295, G833–42 (2008).
42. P. Zhang et al., Transplant. Proc. 48, 3378–3386 (2016).
43. S.-J. Park et al., Cell. 148, 421–433 (2012).
44. J. Most et al., Am. J. Clin. Nutr. 104, 215–227 (2016).
45. K. P. Goh et al., Int. J. Sport Nutr. Exerc. Metab. 24, 2–13 (2014).
46. C. E. Park et al., Exp. Mol. Med. 39, 222–229 (2007).
47. A. M. El-Mowafy, M. Alkhalaf, Carcinogenesis. 24, 869–873 (2003).
48. P. Brasnyó et al., Br. J. Nutr. 106, 383–389 (2011).
49. R. Moldzio et al., J. Neural Transm. 120, 1271–1280 (2013).
50. Y. K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71, 245–249 (2002).
51. S. S. Leonard et al., Biochem. Biophys. Res. Commun. 309, 1017–1026 (2003).
52. G. Spanier et al., J. Physiol. Pharmacol. 60 Suppl 4, 111–116 (2009).
53. N. Xia et al., J. Pharmacol. Exp. Ther. 335, 149–154 (2010).
54. J. P. Crandall et al., J. Gerontol. A Biol. Sci. Med. Sci. 67, 1307–1312 (2012).
55. K. J. Pearson et al., Cell Metab. 8, 157–168 (2008).
56. J. L. Barger et al., PLoS One. 3, e2264 (2008).
57. D. O. Kennedy et al., Am. J. Clin. Nutr. 91, 1590–1597 (2010).
58. Q. Wang et al., Neurochem. Res. 29, 2105–2112 (2004).
59. J.-P. K. Hyatt et al., Front. Physiol. 7, 77 (2016).
60. Y.-L. Tain, W.-C. Lee, K. L. H. Wu, S. Leu, J. Y. H. Chan, Mol. Nutr. Food Res., e1800066 (2018).
61. Y. Zheng et al., Fish Shellfish Immunol. 77, 200–207 (2018).
62. L. Zhao et al., Food Funct. 8, 4644–4656 (2017).
63. J. K. Bird, D. Raederstorff, P. Weber, R. E. Steinert, Adv. Nutr. 8, 839–849 (2017).
64. A. S. Korsholm, T. N. Kjær, M. J. Ornstrup, S. B. Pedersen, Int. J. Mol. Sci. 18 (2017), doi:10.3390/ijms18030554.
65. M. M. Sung et al., Diabetes. 66, 418–425 (2017).
66. M. Larrosa et al., J. Agric. Food Chem. 57, 2211–2220 (2009).
67. K. T. Howitz et al., Nature. 425, 191–196 (2003).
68. S.-C. Hsu et al., Int. J. Biochem. Cell Biol. 53, 361–371 (2014).
69. T. M. Bass, D. Weinkove, K. Houthoofd, D. Gems, L. Partridge, Mech. Ageing Dev. 128, 546–552 (2007).
70. J. G. Wood et al., Nature. 430, 686–689 (2004).

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.