Acetyl-L-Carnitine

COMMON NAME 

Acetyl-L-Carnitine, Acetylcarnitine, ALCAR, ALC

TOP BENEFITS OF ACETYL-L-CARNITINE

  • Supports cholinergic neurotransmission *
  • Supports energy metabolism *
  • Supports brain function and cognitive performance *
  • Supports mood *
  • Supports neuroprotection *
  • Supports healthy aging *

WHAT IS ACETYL-L-CARNITINE?

Acetyl-L-Carnitine (ALCAR) is an acetylated form of L-carnitine. The major difference between ALCAR and L-carnitine is that ALCAR more readily crosses the blood-brain barrier, which is why it tends to be the preferred form for use in brain and nervous system support. The bioavailability of ALCAR is thought to be higher than that of L-carnitine. The name carnitine is derived from Latin “carnus” (flesh) because it was originally found in meat extracts. Adults eating animal products consume about 60–180 milligrams of carnitine per day [1]. Vegans get noticeably less (about 10–12 milligrams) [1], with vegetarians getting a bit more than vegans because of eating dairy products. The carnitine in ALCAR and L-carnitine supports the same functions. The most important role of carnitine is in mitochondrial fat metabolism—it is used to transport long-chain fatty acids across the mitochondrial membrane for breakdown by mitochondrial β-oxidation. This transportation function allows fats and oils from our diet to be used for energy production and enhances mitochondria potential to burn fat. Unlike L-carnitine, which does not contain an acetyl group, ALCAR can support acetylcholine synthesis, because the acetyl group in ALCAR can be delivered to coenzyme A to yield acetyl-CoA, which in turn can be used for the synthesis of the neurotransmitter acetylcholine. Acetyl-CoA can also be used for cell energy production as it is the primary substrate for the Krebs cycle in mitochondria, essential for the production of ATP. Accordingly, ALCAR has been shown to enhance cholinergic neurotransmission and support brain energy metabolism in several studies; it has also shown significant neuroprotective effects [2–5].

NEUROHACKER’S ACETYL-L-CARNITINE SOURCING

ALCAR supplies carnitine, which is used by the body to transport long-chain fatty acids (fats) so they can be broken down and used to make cellular energy (ATP). It is also a source of acetyl groups that can be used to make acetylCoA.
While ALCAR and L-carnitine support the same mitochondrial functions, the ALCAR form tends to be preferentially used in research for brain and nervous system support.
ALCAR sourcing is focused on ensuring it’s NON-GMO and vegan.


ACETYL-L-CARNITINE DOSING PRINCIPLES AND RATIONALE

ALCAR is generally considered to be dose-dependent (see Neurohacker Dosing Principles) in the range it’s commonly dosed (between 500 and 2000 mg). Because of the acetyl group in its structure, 500 mg of ALCAR supplies roughly 400 mg of carnitine. Higher supplemental doses are pharmacological (i.e., substantially higher than what the body gets from the diet and makes daily), while a lower dose would be more physiological, though still greater than what’s supplied in the diet. We opted for a dose on the lower end of the usual supplementation range because ALCAR is additive with other ingredients used in our formulation for supporting brain health, which means that a lower dose should be sufficient to obtain the desired benefits.The dose used is  sufficient to ensure that even persons with very low dietary intake of carnitine, such as vegans and vegetarians, consume adequate carnitine. 

ACETYL-L-CARNITINE KEY MECHANISMS

Brain and cognitive function

  • Supports learning and memory [6,7]
  • Supports attention [6]
  • Supports cognitive function [6–10]
  • Supports mental energy and may help counter mental fatigue [11,12]
  • Source of acetyl groups for acetylcholine synthesis [3,13,14]
  • Supports cholinergic neurotransmission [3,4,13,14]
  • Supports brain energy metabolism [4,15–22]
  • Supports dopamine release [23,24]
  • Supports noradrenaline levels [15]
  • Supports serotonin levels [15]
  • Supports synaptic plasticity [25,26]
  • Supports neuronal membrane lipid/phospholipid metabolism [4,16,27]
  • Supports hip
  • pocampal neurogenesis [28]
  • Supports neuroprotective functions [4,7,21,22,29–35]
  • Supports neural cytokine signaling [7,31,32] 

Mood

  • Supports positive affect [36–43]

Physical strength and fatigue

  • Supports energy and may help counter fatigue [11,44]
  • Supports muscle fuel metabolism [45]

Mitochondrial function

  • Supports mitochondrial function and structure [10,32,33,46]
  • Supports mitochondrial biogenesis [47]

Healthy aging and longevity

  • Supports cerebral metabolism during aging [19]
  • Supports mitochondrial function during aging [10,33,48]
REFERENCES
[1]C.J. Rebouche, Ann. N. Y. Acad. Sci. 1033 (2004) 30–41.
[2]H. Kuratsune, Y. Watanabe, K. Yamaguti, G. Jacobsson, M. Takahashi, T. Machii, H. Onoe, K. Onoe, K. Matsumura, S. Valind, T. Kitani, B. Långström, Biochem. Biophys. Res. Commun. 231 (1997) 488–493.
[3]K.A. Nałecz, D. Miecz, V. Berezowski, R. Cecchelli, Mol. Aspects Med. 25 (2004) 551–567.
[4]L.L. Jones, D.A. McDonald, P.R. Borum, Prog. Lipid Res. 49 (2010) 61–75.
[5]D.W. Foster, Ann. N. Y. Acad. Sci. 1033 (2004) 1–16.
[6]M. Malaguarnera, M. Vacante, M. Motta, M. Giordano, G. Malaguarnera, R. Bella, G. Nunnari, L. Rampello, G. Pennisi, Metab. Brain Dis. 26 (2011) 281–289.
[7]S. Singh, A. Mishra, N. Srivastava, R. Shukla, S. Shukla, Mol. Neurobiol. 55 (2018) 583–602.
[8]S.A. Montgomery, L.J. Thal, R. Amrein, Int. Clin. Psychopharmacol. 18 (2003) 61–71.
[9]J.O. Brooks 3rd, J.A. Yesavage, A. Carta, D. Bravi, Int. Psychogeriatr. 10 (1998) 193–203.
[10]B.N. Ames, J. Liu, Ann. N. Y. Acad. Sci. 1033 (2004) 108–116.
[11]M. Malaguarnera, M.P. Gargante, E. Cristaldi, V. Colonna, M. Messano, A. Koverech, S. Neri, M. Vacante, L. Cammalleri, M. Motta, Arch. Gerontol. Geriatr. 46 (2008) 181–190.
[12]R.C.W. Vermeulen, H.R. Scholte, Psychosomatic Medicine 66 (2004) 276–282.
[13]V. Dolezal, S. Tucek, J. Neurochem. 36 (1981) 1323–1330.
[14]S. Tucek, in: S.-M. Aquilonius, P.-G. Gillberg (Eds.), Progress in Brain Research, Elsevier, 1990, pp. 467–477.
[15]O.B. Smeland, T.W. Meisingset, K. Borges, U. Sonnewald, Neurochem. Int. 61 (2012) 100–107.
[16]T. Aureli, A. Miccheli, R. Ricciolini, M.E. Di Cocco, M.T. Ramacci, L. Angelucci, O. Ghirardi, F. Conti, Brain Res. 526 (1990) 108–112.
[17]T. Aureli, M.E. Di Cocco, C. Puccetti, R. Ricciolini, M. Scalibastri, A. Miccheli, C. Manetti, F. Conti, Brain Res. 796 (1998) 75–81.
[18]C. Ori, U. Freo, G. Pizzolato, M. Dam, Brain Res. 951 (2002) 330–335.
[19]U. Freo, M. Dam, C. Ori, Brain Res. 1259 (2009) 32–39.
[20]R.F. Villa, F. Ferrari, A. Gorini, Neurochem. Res. 36 (2011) 1372–1382.
[21]T. Aureli, A. Miccheli, M.E. Di Cocco, O. Ghirardi, A. Giuliani, M.T. Ramacci, F. Conti, Brain Res. 643 (1994) 92–99.
[22]R.E. Rosenthal, R. Williams, Y.E. Bogaert, P.R. Getson, G. Fiskum, Stroke 23 (1992) 1312–7; discussion 1317–8.
[23]H. Sershen, L.G. Harsing Jr, M. Banay-Schwartz, A. Hashim, M.T. Ramacci, A. Lajtha, J. Neurosci. Res. 30 (1991) 555–559.
[24]L.G. Harsing Jr, H. Sershen, E. Toth, A. Hashim, M.T. Ramacci, A. Lajtha, Eur. J. Pharmacol. 218 (1992) 117–121.
[25]R. Laschi, L. Badiali de Giorgi, F. Bonvicini, L. Centurione, Int. J. Clin. Pharmacol. Res. 10 (1990) 59–63.
[26]K. Kocsis, R. Frank, J. Szabó, L. Knapp, Z. Kis, T. Farkas, L. Vécsei, J. Toldi, Neuroscience 332 (2016) 203–211.
[27]T. Aureli, M.E. Di Cocco, G. Capuani, R. Ricciolini, C. Manetti, A. Miccheli, F. Conti, Neurochem. Res. 25 (2000) 395–399.
[28]S. Singh, A. Mishra, S.K. Mishra, S. Shukla, Neurochem. Int. 108 (2017) 388–396.
[29]S.A. Zanelli, N.J. Solenski, R.E. Rosenthal, G. Fiskum, Ann. N. Y. Acad. Sci. 1053 (2008) 153–161.
[30]Y. Liu, R.E. Rosenthal, P. Starke-Reed, G. Fiskum, Free Radic. Biol. Med. 15 (1993) 667–670.
[31]S. Afshin-Majd, K. Bashiri, Z. Kiasalari, T. Baluchnejadmojarad, R. Sedaghat, M. Roghani, Biomed. Pharmacother. 89 (2017) 1–9.
[32]H. Keshavarz-Bahaghighat, M.R. Sepand, M.H. Ghahremani, M. Aghsami, N. Sanadgol, A. Omidi, V. Bodaghi-Namileh, O. Sabzevari, Biol. Trace Elem. Res. 184 (2018) 422–435.
[33]L. Nicassio, F. Fracasso, G. Sirago, C. Musicco, A. Picca, E. Marzetti, R. Calvani, P. Cantatore, M.N. Gadaleta, V. Pesce, Exp. Gerontol. 98 (2017) 99–109.
[34]G. Forloni, N. Angeretti, S. Smiroldo, J. Neurosci. Res. 37 (1994) 92–96.
[35]M.A. Virmani, V. Caso, A. Spadoni, S. Rossi, F. Russo, F. Gaetani, Ann. N. Y. Acad. Sci. 939 (2006) 162–178.
[36]S. Chiechio, P.L. Canonico, M. Grilli, Int. J. Mol. Sci. 19 (2017).
[37]N. Veronese, B. Stubbs, M. Solmi, O. Ajnakina, A.F. Carvalho, S. Maggi, Psychosom. Med. 80 (2018) 154–159.
[38]S.-M. Wang, C. Han, S.-J. Lee, A.A. Patkar, P.S. Masand, C.-U. Pae, J. Psychiatr. Res. 53 (2014) 30–37.
[39]G. Garzya, D. Corallo, A. Fiore, G. Lecciso, G. Petrelli, C. Zotti, Drugs Exp. Clin. Res. 16 (1990) 101–106.
[40]E. Tempesta, L. Casella, C. Pirrongelli, L. Janiri, M. Calvani, L. Ancona, Drugs Exp. Clin. Res. 13 (1987) 417–423.
[41]R. Zanardi, E. Smeraldi, Eur. Neuropsychopharmacol. 16 (2006) 281–287.
[42]G. Bersani, G. Meco, A. Denaro, D. Liberati, C. Colletti, R. Nicolai, F.S. Bersani, A. Koverech, Eur. Neuropsychopharmacol. 23 (2013) 1219–1225.
[43]P. Leombruni, M. Miniotti, F. Colonna, C. Sica, L. Castelli, M. Bruzzone, S. Parisi, E. Fusaro, P. Sarzi-Puttini, F. Atzeni, R.G. Torta, Clin. Exp. Rheumatol. 33 (2015) S82–5.
[44]M. Malaguarnera, R. Bella, M. Vacante, M. Giordano, G. Malaguarnera, M.P. Gargante, M. Motta, A. Mistretta, L. Rampello, G. Pennisi, Scand. J. Gastroenterol. 46 (2011) 750–759.
[45]B.T. Wall, F.B. Stephens, D. Constantin-Teodosiu, K. Marimuthu, I.A. Macdonald, P.L. Greenhaff, J. Physiol. 589 (2011) 963–973.
[46]A. Gorini, A. D’Angelo, R.F. Villa, Neurochemical Research 23 (1998) 1485–1491.
[47]P. Cassano, A.G. Sciancalepore, V. Pesce, M. Flück, H. Hoppeler, M. Calvani, L. Mosconi, P. Cantatore, M.N. Gadaleta, Biochim. Biophys. Acta 1757 (2006) 1421–1428.
[48]V. Calabrese, A.M. Giuffrida Stella, M. Calvani, D.A. Butterfield, J. Nutr. Biochem. 17 (2006) 73–88.