Bacopa monnieri Leaf Extract


Bacopa | Brahmi | Water Hyssop


  • Supports brain function and cognitive performance *
  • Supports a calm mood *
  • Supports healthy stress responses *
  • Supports antioxidant defenses *
  • Supports neuroprotection *
  • Supports vascular function *


Bacopa monnieri has been used in Ayurvedic medicine for almost 3000 years. One of its main traditional uses has been as a neural tonic to support intelligence, cognitive performance, nervous system rejuvenation, and brain function. These traditional uses have made it a favorite nootropic herb. Scientific studies on B. monnieri have focused primarily on cognitive function and mood. B. monnieri has also shown adaptogenic properties, supporting the brain and nervous system during stress. B. monnieri contains saponins called bacosides. These compounds, most notably  bacosides A and B, are believed to underlie the plant’s nootropic reputation [1,2]. B. monnieri also has strong antioxidant properties that may contribute to neuroprotective functions in the brain.


Bacopa monnieri Leaf Extract is made from aerial parts of the plants harvested in India and uses a 10:1 herb to extract ratio.
Bacopa monnieri Leaf Extract is standardized to contain 20% bacosides, calculated as the sum of bacopaside I, bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C and bacopasaponin C.
Bacopa monnieri Leaf Extract is NON-GMO and vegan.


Clinical studies using standardized Bacopa monnieri extracts typically use between 250-640 mg of these concentrated extracts. These doses have been equivalent to 3000 to 9000 mg of the dried herb. We consider B. monnieri to be in the adaptogenic herb category, following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is consistent with the studied amount in the human clinical studies for supporting cognitive function and mood.*


Brain and cognitive function

  • Supports learning and memory [3–8]
  • Supports attention [9]
  • Supports working memory [10]
  • Supports executive function [6,11]
  • Supports alertness [11]
  • Supports cognitive health [12–14]
  • Supports acetylcholine levels [12]
  • Influences acetylcholinesterase activity [15–17]
  • Supports choline acetyltransferase activity [15]
  • Supports dopamine levels [18,19]
  • Supports tryptophan hydroxylase activity [18]
  • Supports serotonin levels [12,18,19]
  • Supports GABAergic neurotransmission [20–22]
  • Supports dendritic growth and branching [23,24]
  • Supports healthy brain cytokine signaling [25]
  • Supports neuroprotective functions [16,26–34]
  • Counters neuronal reactive oxygen species (ROS) levels and oxidative stress [16,31,33,34]
  • Supports neuronal antioxidant defenses [16,26–28,33–35]
  • Supports neuronal mitochondrial function [33,34,36]

Stress and mood

  • Supports a calm mood [6,11]
  • Supports healthy stress responses and stress hormone levels [19,37–39]
  • Regulates stress-induced changes in dopamine and serotonin levels [19]
  • Supports positive affect [7,40,41}

Vascular health

  • Supports vascular function [42]
  • Supports healthy cerebral blood flow [43]

[1]C. Sivaramakrishna, C.V. Rao, G. Trimurtulu, M. Vanisree, G.V. Subbaraju, Phytochemistry 66 (2005) 2719–2728.
[2]N.P. Sukumaran, A. Amalraj, S. Gopi, Complement. Ther. Med. 44 (2019) 68–82.
[3]M.P. Pase, J. Kean, J. Sarris, C. Neale, A.B. Scholey, C. Stough, J. Altern. Complement. Med. 18 (2012) 647–652.
[4]C. Neale, D. Camfield, J. Reay, C. Stough, A. Scholey, Br. J. Clin. Pharmacol. 75 (2013) 728–737.
[5]A. Morgan, J. Stevens, J. Altern. Complement. Med. 16 (2010) 753–759.
[6]C. Calabrese, W.L. Gregory, M. Leo, D. Kraemer, K. Bone, B. Oken, J. Altern. Complement. Med. 14 (2008) 707–713.
[7]C. Stough, J. Lloyd, J. Clarke, L.A. Downey, C.W. Hutchison, T. Rodgers, P.J. Nathan, Psychopharmacology 156 (2001) 481–484.
[8]S. Raghav, H. Singh, P.K. Dalal, J.S. Srivastava, O.P. Asthana, Indian J. Psychiatry 48 (2006) 238–242.
[9]C. Kongkeaw, P. Dilokthornsakul, P. Thanarangsarit, N. Limpeanchob, C. Norman Scholfield, J. Ethnopharmacol. 151 (2014) 528–535.
[10]C. Stough, L.A. Downey, J. Lloyd, B. Silber, S. Redman, C. Hutchison, K. Wesnes, P.J. Nathan, Phytother. Res. 22 (2008) 1629–1634.
[11]S. Benson, L.A. Downey, C. Stough, M. Wetherell, A. Zangara, A. Scholey, Phytother. Res. 28 (2014) 551–559.
[12]K.E. Rajan, H.K. Singh, A. Parkavi, P.D. Charles, Neurochem. Res. 36 (2011) 2136–2144.
[13]M.K. Saraf, S. Prabhakar, K.L. Khanduja, A. Anand, Evid. Based. Complement. Alternat. Med. 2011 (2011) 236186.
[14]S. Prabhakar, M.K. Saraf, P. Pandhi, A. Anand, Psychopharmacology 200 (2008) 27–37.
[15]S. Aguiar, T. Borowski, Rejuvenation Res. 16 (2013) 313–326.
[16]G.K. Shinomol, R.B. Mythri, M.M. Srinivas Bharath, Muralidhara, Cell. Mol. Neurobiol. 32 (2012) 455–465.
[17]A. Das, G. Shanker, C. Nath, R. Pal, S. Singh, H. Singh, Pharmacol. Biochem. Behav. 73 (2002) 893–900.
[18]P.D. Charles, G. Ambigapathy, P. Geraldine, M.A. Akbarsha, K.E. Rajan, J. Ethnopharmacol. 134 (2011) 55–61.
[19]N. Sheikh, A. Ahmad, K.B. Siripurapu, V.K. Kuchibhotla, S. Singh, G. Palit, J. Ethnopharmacol. 111 (2007) 671–676.
[20]J. Mathew, G. Gangadharan, K.P. Kuruvilla, C.S. Paulose, Neurochem. Res. 36 (2011) 7–16.
[21]J. Mathew, S. Soman, J. Sadanandan, C.S. Paulose, J. Ethnopharmacol. 130 (2010) 255–261.
[22]J. Mathew, S. Balakrishnan, S. Antony, P.M. Abraham, C.S. Paulose, J. Biomed. Sci. 19 (2012) 25.
[23]V.R. Vollala, S. Upadhya, S. Nayak, Rom. J. Morphol. Embryol. 52 (2011) 879–886.
[24]V.R. Vollala, S. Upadhya, S. Nayak, Clinics 66 (2011) 663–671.
[25]M. Rastogi, R.P. Ojha, B.P. Devi, A. Aggarwal, A. Agrawal, G.P. Dubey, Neurochem. Res. 37 (2012) 869–874.
[26]S. Tripathi, A.A. Mahdi, M. Hasan, K. Mitra, F. Mahdi, Cell. Mol. Biol. 57 (2011) 3–15.
[27]T. Sumathi, C. Shobana, J. Christinal, C. Anusha, Cell. Mol. Neurobiol. 32 (2012) 979–987.
[28]A. Jyoti, D. Sharma, Neurotoxicology 27 (2006) 451–457.
[29]R. Hosamani, Muralidhara, Neurotoxicology 30 (2009) 977–985.
[30]N. Uabundit, J. Wattanathorn, S. Mucimapura, K. Ingkaninan, J. Ethnopharmacol. 127 (2010) 26–31.
[31]M. Dhanasekaran, B. Tharakan, L.A. Holcomb, A.R. Hitt, K.A. Young, B.V. Manyam, Phytother. Res. 21 (2007) 965–969.
[32]G.K. Shinomol, M.M.S. Bharath, Muralidhara, Neurotox. Res. 22 (2012) 102–114.
[33]R. Hosamani, G. Krishna, Muralidhara, Nutr. Neurosci. 19 (2016) 434–446.
[34]G.K. Shinomol, Muralidhara, Phytomedicine 18 (2011) 317–326.
[35]S.K. Bhattacharya, A. Bhattacharya, A. Kumar, S. Ghosal, Phytother. Res. 14 (2000) 174–179.
[36]S. Srivastav, M. Fatima, A.C. Mondal, Neurochem. Int. 121 (2018) 98–107.
[37]D. Rai, G. Bhatia, G. Palit, R. Pal, S. Singh, H.K. Singh, Pharmacol. Biochem. Behav. 75 (2003) 823–830.
[38]K. Anbarasi, G. Kathirvel, G. Vani, G. Jayaraman, C.S. Shyamala Devi, Neuroscience 138 (2006) 1127–1135.
[39]D.K. Chowdhuri, D. Parmar, P. Kakkar, R. Shukla, P.K. Seth, R.C. Srimal, Phytother. Res. 16 (2002) 639–645.
[40]M. Chatterjee, P. Verma, G. Palit, Indian J. Exp. Biol. 48 (2010) 306–313.
[41]L. Micheli, S. Spitoni, L. Di Cesare Mannelli, A.R. Bilia, C. Ghelardini, S. Pallanti, Phytother. Res. 34 (2020) 2331–2340.
[42]N. Kamkaew, C.N. Scholfield, K. Ingkaninan, P. Maneesai, H.C. Parkington, M. Tare, K. Chootip, J. Ethnopharmacol. 137 (2011) 790–795.
[43]N. Kamkaew, C. Norman Scholfield, K. Ingkaninan, N. Taepavarapruk, K. Chootip, Phytother. Res. 27 (2013) 135–138.