Cocoa Seed Extract


Cocoa Extract Common Name

Cocoa | Cocoa Bean | Cacao | Chocolate 

Top Benefits of Cocoa Extract

  • Supports healthy aging*
  • Supports exercise performance*
  • Supports brain function*
  • Supports visual acuity*
  • Supports mitochondrial structure, function, and biogenesis* 
  • Supports muscle structure and function* 
  • Supports antioxidant defenses* 
  • Supports healthy metabolic pathways* 
  • Supports healthy gut microbiota*
  • Supports cardiovascular function and circulation* 

What is Cocoa Extract?

Theobroma cacao has been cultivated in central and south America for at least 3,000 years. The name Theobroma cacao can be translated as chocolate, food of the gods. This tree is native to the tropical regions of the Americas. The seeds (sometimes referred to as beans) are enclosed in a pod or husk. They  are the source of the cocoa used to make chocolate. Chocolate, especially dark chocolate, has a blossoming reputation as being heart healthy. This is because of the cocoa content. Cocoa has been reported to support many health-promoting and energy-enhancing actions ranging from improving mitochondrial structure and function to enhancing cognitive performance and vision. Cocoa is one of the biggest dietary sources for polyphenol compounds, a category of plant-derived molecules that are increasingly being shown to support healthy aging. It is an especially great food source of (‐)‐epicatechin, a unique flavanol polyphenol. Cocoa is also a rich source of a bitter compound called theobromine. This compound is a weaker cousin of sorts to caffeine, influencing similar brain processes but not quite as strongly. Cocoa flavanols, especially (‐)‐epicatechin, and theobromine can cross the blood brain barrier, supporting brain performance and vision. The synergy between the cocoa flavanol and theobromine content is responsible for cocoa’s ability to support such a wide range of health processes.*

Neurohacker’s Cocoa Extract Sourcing

In general, cocoa flavanol content varies widely, because many flavanols are degraded when cocoa is processed. The result is that, although in theory cocoa-containing products should be a great source of flavanols, in practice many are not. When selecting a cocoa extract it’s important to choose a source that retains high amounts of the cocoa flavanols.

Neurohacker uses ACTICOA® cocoa created by Barry Callebaut. After years of research, and through controlled sourcing and processing, they found a way to retain high amounts of the naturally occurring flavanols found in cocoa beans.

ACTICOA® cocoa is at least 7.5% cocoa flavanols. It also contains about 2% theobromine.

ACTICOA® is non-GMO, gluten-free, and vegan.

Cocoa Extract Dosing Principles and Rationale

When deciding on a dose of a cocoa extract we think it’s important to consider the amount of cocoa flavanols and theobromine. Flavanols are a sub-group of polyphenols, and are one of the main class of active compounds in cocoa bean extracts and powders. Some polyphenols appear to produce threshold responses, while others produce biphasic responses. In either case, above a certain range, more is not better. In addition to flavanols cocoa contains a bitter alkaloid compound called theobromine. Although theobromine is a weaker cousin of sorts to caffeine, it can cause some of the same issues if consumed in excess. So, similar to caffeine we think of theobromine as having a hormetic range (i.e., a dosing range above which results could be poorer). We have selected to dose cocoa extract at an amount of theobromine that is well below the threshold amount, but sourced a cocoa extract that retains high amounts of the naturally occurring flavanols. With both of these compounds we think it’s important to generally follow hormetic dosing principles (see Neurohacker Dosing Principles). *

Cocoa Extract Key Mechanisms 

Mitochondrial biogenesis

  • Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) 1–6
  • Upregulates cAMP-PKA-CREB signaling 7
  • Upregulates nuclear transcription factors of mitochondrial biogenesis (mitochondrial transcription factor A [TFAM]) 2,5,6,8–10
  • Promotes healthy nitric oxide (NO) pathway function 1,8,10

Mitochondrial structure

  • Promotes inner mitochondrial membrane folding (cristae density) 1,2,8
  • Upregulates mitochondrial membrane protein compounds (porin, mitofilin) 1,5,6,8,10
  • Upregulates mitochondrial size/density/number 1,11

Mitochondrial function

  • Supports electron transport chain and oxidative phosphorylation performance (mitochondrial complex I-V performance) 1,2,5,8–10,12–14
  • Supports mitochondrial β-oxidation performance 11
  • Supports citric acid cycle function via upregulation of citrate synthase 3,5,8–10,13

Exercise performance (ergogenic effects)

  • Supports endurance performance 3,8,9,13,15,16
  • Supports post-exercise recovery 17–19
  • Supports muscle structure and function 8,16,20,21
  • Promotes muscle angiogenesis/vascularity/capillarity 2,8,9,13
  • Upregulates muscle carbohydrate metabolism 22
  • Supports antioxidant capacity during exercise 23

Antioxidant defenses

  • Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], thioredoxin [TRX]) 4,5,21
  • Replenishes glutathione (GSH) levels 3–5,14,21,24
  • Supports a healthy mitochondrial redox status 3,5

Cardiovascular function

  • Supports healthy blood flow (endothelial function and endothelium/NO-dependent vasodilation)25–29
  • Supports healthy blood pressure 25–27,30–33
  • Supports healthy cholesterol levels 25,26,34,35
  • Supports healthy insulin sensitivity 25–27,30–32,36

Brain function

  • Supports cognitive performance 7,31,37–45
  • Supports exercise-induced executive function improvements 46
  • Promotes motor activity 43
  • Promotes cerebral blood flow,41,47,48 cerebral oxygenation,49 and angiogenesis in the hippocampus 45
  • Cerebral antioxidant 37
  • Central nervous system stimulant (theobromine) 50
  • Adenosine receptor antagonist (theobromine);50  regulates neurotransmitters modulated by adenosine – noradrenaline, dopamine, serotonin, acetylcholine, glutamate, and GABA 43
  • Phosphodiesterase (PDE) inhibitor (theobromine) — upregulates intracellular cAMP 7(long-term potentiation support)
  • Upregulates BDNF signaling 7,51 (neurogenesis support) 

Gut microbiota

  • Regulates the composition of the gut microbiota 52–55
  • Regulates gut microbial metabolism 54,56 

Healthy aging and longevity  

  • Increases lifespan (rats, diabetic mice, Drosophila melanogaster, Caenorhabditis elegans) 41,42,57
  • Upregulates the NAD+ Pool 58
  • Upregulates insulin-like growth factor-1 (IGF-1) signaling 21,57
  • Upregulates SIRT1 1,4–6,58
  • Upregulates SIRT3 4–6
  • Promotes resistance to oxidative stress 57
  • Supports mild mitochondrial uncoupling (UCP1 increase) 6,11
  • Upregulates signaling pathways: AMP-Activated Protein Kinase (AMPK),3,21 liver kinase B1 (LKB1, also known as serine/threonine kinase 11 [STK11]),p38 mitogen-activated protein kinases (p38 MAPK) 2


REFERENCES

1. Taub PR, et al. Clin Transl Sci. 2012;5(1):43-47. doi:10.1111/j.1752-8062.2011.00357.x
2. Hüttemann M, et al. Clin Sci . 2013;124(11):663-674. doi:10.1042/CS20120469
3. Taub PR, et al. Food Funct. 2016;7(9):3686-3693. doi:10.1039/c6fo00611f
4. Ramirez-Sanchez I, et al. Int J Cardiol. 2013;168(4):3982-3990. doi:10.1016/j.ijcard.2013.06.089
5. Ramirez-Sanchez I, et al. FEBS J. 2014;281(24):5567-5580. doi:10.1111/febs.13098
6. Gutiérrez-Salmeán G, et al. Eur J Pharmacol. 2014;728:24-30. doi:10.1016/j.ejphar.2014.01.053
7. Yoneda M, et al. J Nutr Biochem. 2017;39:110-116. doi:10.1016/j.jnutbio.2016.10.002
8. Nogueira L, et al. J Physiol. 2011;589(Pt 18):4615-4631. doi:10.1113/jphysiol.2011.209924
9. Lee I, et al. Front Pharmacol. 2015;6:43. doi:10.3389/fphar.2015.00043
10. Moreno-Ulloa A, et al. Bioorg Med Chem Lett. 2013;23(15):4441-4446. doi:10.1016/j.bmcl.2013.05.079
11. Watanabe N, et al. Lipids Health Dis. 2014;13:64. doi:10.1186/1476-511X-13-64
12. Silva Santos LF, et al. J Arrhythm. 2017;33(3):220-225. doi:10.1016/j.joa.2016.09.004
13. Hüttemann M, et al. FASEB J. 2012;26(4):1413-1422. doi:10.1096/fj.11-196154
14. Rowley TJ 4th, et al. J Nutr Biochem. 2017;49:30-41. doi:10.1016/j.jnutbio.2017.07.015
15. Patel RK, et al. J Int Soc Sports Nutr. 2015;12:47. doi:10.1186/s12970-015-0106-7
16. Taub PR, et al. Clin Sci . 2013;125(8):383-389. doi:10.1042/CS20130023
17. Papacosta E, et al. Appl Physiol Nutr Metab. 2015;40(11):1116-1122. doi:10.1139/apnm-2015-0243
18. Potter J, Fuller B. J Sports Med Phys Fitness. 2015;55(12):1438-1444. PMID: 25286886.
19. McBrier NM, et al. J Strength Cond Res. 2010;24(8):2203-2210. doi:10.1519/JSC.0b013e3181e4f7f9
20. Gutierrez-Salmean G, et al. J Nutr Biochem. 2014;25(1):91-94. doi:10.1016/j.jnutbio.2013.09.007
21. Si H, et al. J Nutr. 2011;141(6):1095-1100. doi:10.3945/jn.110.134270
22. Stellingwerff T, et al. Appl Physiol Nutr Metab. 2014;39(2):173-182. doi:10.1139/apnm-2013-0152
23. Decroix L, et al. J Int Soc Sports Nutr. 2017;14:28. doi:10.1186/s12970-017-0186-7
24. Barragán Mejía G, et al. Naunyn Schmiedebergs Arch Pharmacol. 2011;384(6):499-504. doi:10.1007/s00210-011-0676-0
25. Grassi D, et al. Hypertension. 2005;46(2):398-405. doi:10.1161/01.HYP.0000174990.46027.70
26. Grassi D, et al. J Nutr. 2008;138(9):1671-1676. doi:10.1093/jn/138.9.1671
27. Davison K, et al. Int J Obes . 2008;32(8):1289-1296. doi:10.1038/ijo.2008.66
28. Fisher NDL, et al. J Hypertens. 2003;21(12):2281-2286. doi:10.1097/01.hjh.0000084783.15238.eb
29. Schroeter H, et al. Proc Natl Acad Sci U S A. 2006;103(4):1024-1029. doi:10.1073/pnas.0510168103
30. Grassi D, et al. Am J Clin Nutr. 2005;81(3):611-614. doi:10.1093/ajcn/81.3.611
31. Desideri G, et al. Hypertension. 2012;60(3):794-801. doi:10.1161/HYPERTENSIONAHA.112.193060
32. Hooper L, et al. Am J Clin Nutr. 2012;95(3):740-751. doi:10.3945/ajcn.111.023457
33. Ried K, et al. Cochrane Database Syst Rev. 2012;(8):CD008893. doi:10.1002/14651858.CD008893.pub2
34. Mellor DD, et al. Diabet Med. 2010;27(11):1318-1321. doi:10.1111/j.1464-5491.2010.03108.x
35. Neufingerl N, et al. Am J Clin Nutr. 2013;97(6):1201-1209. doi:10.3945/ajcn.112.047373
36. Esser D, et al. PLoS One. 2018;13(4):e0194229. doi:10.1371/journal.pone.0194229
37. Rozan P, et al. J Food Sci. 2007;72(3):S203-S206. doi:10.1111/j.1750-3841.2007.00297.x
38. Field DT, et al. Physiol Behav. 2011;103(3-4):255-260. doi:10.1016/j.physbeh.2011.02.013
39. Nurk E, et al. J Nutr. 2009;139(1):120-127. doi:10.3945/jn.108.095182
40. Scholey AB, et al. J Psychopharmacol. 2010;24(10):1505-1514. doi:10.1177/0269881109106923
41. Sorond FA, et al. Neuropsychiatr Dis Treat. 2008;4(2):433-440. PMID: 18728792.
42. Bisson J-F, et al. Br J Nutr. 2008;100(1):94-101. doi:10.1017/S0007114507886375
43. Burnstock G. Adv Exp Med Biol. 2013;986:1-12. doi:10.1007/978-94-007-4719-7_1
44. Camfield DA, et al. Physiol Behav. 2012;105(4):948-957. doi:10.1016/j.physbeh.2011.11.013
45. van Praag H, et al. J Neurosci. 2007;27(22):5869-5878. doi:10.1523/JNEUROSCI.0914-07.2007
46. Tsukamoto H, et al. Nutrition. 2018;46:90-96. doi:10.1016/j.nut.2017.08.017
47. Fisher NDL, et al. J Cardiovasc Pharmacol. 2006;47 Suppl 2:S210-S214. PMID: 16794460.
48. Francis ST, et al. J Cardiovasc Pharmacol. 2006;47 Suppl 2:S215-S220. PMID: 16794461.
49. Decroix L, et al. Appl Physiol Nutr Metab. 2016;41(12):1225-1232. doi:10.1139/apnm-2016-0245
50. Franco R, et al. Nutrients. 2013;5(10):4159-4173. doi:10.3390/nu5104159
51. Cimini A, et al. J Cell Biochem. 2013;114(10):2209-2220. doi:10.1002/jcb.24548
52. Camps-Bossacoma M, et al. Oxid Med Cell Longev. 2017;2017:7417505. doi:10.1155/2017/7417505
53. Tzounis X, et al. Am J Clin Nutr. 2011;93(1):62-72. doi:10.3945/ajcn.110.000075
54. Fogliano V, et al. Mol Nutr Food Res. 2011;55 Suppl 1:S44-S55. doi:10.1002/mnfr.201000360
55. Massot-Cladera M, et al. Arch Biochem Biophys. 2012;527(2):105-112. doi:10.1016/j.abb.2012.05.015
56. Martin F-PJ, et al. J Proteome Res. 2009;8(12):5568-5579. doi:10.1021/pr900607v
57. Martorell P, et al. J Agric Food Chem. 2011;59(5):2077-2085. doi:10.1021/jf104217g
58. Duarte DA, et al. J Nutr Biochem. 2015;26(1):64-74. doi:10.1016/j.jnutbio.2014.09.003