Ginger Root Extract

Ginger (Zingiber officinale) Root Extract COMMON NAME

Ginger

TOP BENEFITS OF GINGER ROOT EXTRACT

Supports healthy vision *

Supports cognitive function * 

Supports gastrointestinal health *

WHAT IS GINGER ROOT EXTRACT?

Ginger is the common name for the whole or cut rhizome—the underground stem or vertical portion of the root—of the plant Zingiber officinale. Ginger has a long history of use as a food spice—it is one of the most widely used spices in the world. It also has a long history of use in Traditional Chinese Medicine (TCM), Ayurveda, and other healing systems. Ginger can be used alone, but is very commonly a part of poly-ingredient herbal combinations. In Ayurveda, as an example, the combination of ginger, black pepper, and long pepper, called Trikatu (“three pungent spices”), is frequently used together and also added to many other herb mixes. Modern science has discovered that ginger is a bioenhancer, positively influencing the bioavailability of some other compounds, which may partly explain why it’s often been combined with other herbs. Ginger contains many bioactive compounds, including several  phenolic and terpene compounds. Gingerols, the compounds primarily responsible for the pungency of ginger root, are one of its main bioactive compounds. These pungent principles give ginger it’s characteristic flavor and spiciness; they also confer a number of health benefits. Ginger was used for a large number of health purposes historically. Modern science continues to investigate ginger in a wide range of areas, including brain, gastrointestinal, metabolic, musculoskeletal, and vision health.

NEUROHACKER’S GINGER ROOT EXTRACT SOURCING

Ginger Root Extract is standardized to contain not less than 5% Gingerols. Gingerols are among ginger’s main bioactive compounds that confer a number of health benefits.

Ginger Root Extract is gluten-free, non-GMO, vegan, Kosher, and Halal certified.

GINGER ROOT EXTRACT DOSING PRINCIPLES AND RATIONALE

Standardized ginger root extracts have been typically dosed from several hundred to 800 mg when used alone in human clinical studies. Given the responses to ginger in studies that have compared different doses, we consider ginger extracts to follow threshold dosing principles (see Neurohacker Dosing Principles), where much of the benefits occur in the lower-to-middle end of the dosage range. When ginger extracts are combined with other herbs, the dose used would normally be at the low end of the range. The dose of ginger extract used in our formulas will be dictated by what it’s being used to do and will follow dosage amounts consistent with using an extract with a standardized amount of gingerols, ginger’s main bioactive compounds When ginger extract is in a formula primarily for its role as a bioenhancer to enhance the bioavailability of other ingredients, the dose will be low (similar to piperine, it has not required a high dose of ginger for bioenhancement). When used for other purposes, the dose will be consistent with dose ranges for that purpose taking into account the other herb extracts used in combination with the ginger extract. 

GINGER ROOT EXTRACT KEY MECHANISMS

Vision

Supports healthy retinal function [1]

Supports healthy lens function [2,3]

Supports protection from advanced glycation end-products (AGEs) formation in the eye lens [1,2]

Supports antioxidant defenses [4]

Supports retinal microvasculature [5]

Brain function

Supports cognitive function [6,7]

Supports neuroprotective functions [8–11]

Gastrointestinal function

Supports healthy gut microbiome function [12–15]

Supports digestive function (e.g., gastrointestinal motility, emptying, abdominal comfort) [16–19]

Supports gut-brain axis [20–23]

Supports mucosal- and gastro-protective functions [24,25]

Antioxidant defenses

Free radical scavenger [10,12]

Counters ROS production and oxidative stress [13–15]

Supports antioxidant defenses [13–17]

Supports Nrf-2 signaling [13,17,18]

Bioavailability enhancement

Enhances bioavailability of β-carotene [19,20]

Enhances bioavailability of minerals including calcium, iron, and zinc [21]

Enhances lipid absorption by promoting bile acid secretion and lipase enzymes (so would be expected to support absorption of many fat-soluble nutrients) [22]

Supports microvilli length and greater absorptive surface of the small intestine [23]

Synergies

Ginkgo biloba for mood support (Hasenöhrl et al. 1996; Hasenöhrl et al. 1998; Topic et al. 2002; Topic et al. 2002)

Artichoke for digestive support (Giacosa et al. 2015)

Magnolia bark for mood support (Qiang et al. 2009)

Turmeric for joint support (Heidari-Beni et al. 2020) and metabolic health (Hussain et al. 2018)

Alpinia galanga for joint support (Altman and Marcussen 2001)


REFERENCES

[1]C. Sampath, Y. Zhu, S. Sang, M. Ahmedna, Phytomedicine 23 (2016) 200–213.

[2]M. Saraswat, P. Suryanarayana, P.Y. Reddy, M.A. Patil, N. Balakrishna, G.B. Reddy, Mol. Vis. 16 (2010) 1525–1537.

[3]A. Kato, Y. Higuchi, H. Goto, H. Kizu, T. Okamoto, N. Asano, J. Hollinshead, R.J. Nash, I. Adachi, J. Agric. Food Chem. 54 (2006) 6640–6644.

[4]A. Akbari, K. Nasiri, M. Heydari, Avicenna J Phytomed 10 (2020) 365–371.

[5]S. Dongare, S.K. Gupta, R. Mathur, R. Saxena, S. Mathur, R. Agarwal, T.C. Nag, S. Srivastava, P. Kumar, Mol. Vis. 22 (2016) 599–609.

[6]N. Saenghong, J. Wattanathorn, S. Muchimapura, T. Tongun, N. Piyavhatkul, C. Banchonglikitkul, T. Kajsongkram, Evid. Based. Complement. Alternat. Med. 2012 (2012) 383062.

[7]S. Lim, M. Moon, H. Oh, H.G. Kim, S.Y. Kim, M.S. Oh, J. Nutr. Biochem. 25 (2014) 1058–1065.

[8]G. Park, H.G. Kim, M.S. Ju, S.K. Ha, Y. Park, S.Y. Kim, M.S. Oh, Acta Pharmacol. Sin. 34 (2013) 1131–1139.

[9]E. Huh, S. Lim, H.G. Kim, S.K. Ha, H.-Y. Park, Y. Huh, M.S. Oh, Food Funct. 9 (2018) 171–178.

[10]J. Yao, C. Ge, D. Duan, B. Zhang, X. Cui, S. Peng, Y. Liu, J. Fang, J. Agric. Food Chem. 62 (2014) 5507–5518.

[11]G.-F. Zeng, Z.-Y. Zhang, L. Lu, D.-Q. Xiao, S.-H. Zong, J.-M. He, Rejuvenation Res. 16 (2013) 124–133.

[12]X. Wang, D. Zhang, H. Jiang, S. Zhang, X. Pang, S. Gao, H. Zhang, S. Zhang, Q. Xiao, L. Chen, S. Wang, D. Qi, Y. Li, Front. Microbiol. 11 (2020) 576061.

[13]Z.-J. Ma, H.-J. Wang, X.-J. Ma, Y. Li, H.-J. Yang, H. Li, J.-R. Su, C.-E. Zhang, L.-Q. Huang, Food Funct. 11 (2020) 10839–10851.

[14]J. Wang, P. Wang, D. Li, X. Hu, F. Chen, Eur. J. Nutr. 59 (2020) 699–718.

[15]A.K. Samanta, C. Jayaram, N. Jayapal, N. Sondhi, A.P. Kolte, S. Senani, M. Sridhar, A. Dhali, PLoS One 10 (2015) e0132961.

[16]S.K. Panda MPharm, S. Nirvanashetty PhD, V.A. Parachur BTech, C. Krishnamoorthy MPharm, S. Dey MSc, J. Diet. Suppl. (2020) 1–13.

[17]M. Nikkhah Bodagh, I. Maleki, A. Hekmatdoost, Food Sci Nutr 7 (2019) 96–108.

[18]K.-L. Wu, C.K. Rayner, S.-K. Chuah, C.-S. Changchien, S.-N. Lu, Y.-C. Chiu, K.-W. Chiu, C.-M. Lee, Eur. J. Gastroenterol. Hepatol. 20 (2008) 436–440.

[19]M.A.L. van Tilburg, O.S. Palsson, Y. Ringel, W.E. Whitehead, Complement. Ther. Med. 22 (2014) 17–20.

[20]A. Giacosa, P. Morazzoni, E. Bombardelli, A. Riva, G. Bianchi Porro, M. Rondanelli, Eur. Rev. Med. Pharmacol. Sci. 19 (2015) 1291–1296.

[21]I. Lete, J. Alluέ, Integr. Med. 11 (2016) IMI.S36273.

[22]H.H. Pertz, J. Lehmann, R. Roth-Ehrang, S. Elz, Planta Med. 77 (2011) 973–978.

[23]I. Ullah, F. Subhan, M. Ayaz, R. Shah, G. Ali, I.U. Haq, S. Ullah, BMC Complement. Altern. Med. 15 (2015) 34.

[24]V.N. Drozdov, V.A. Kim, E.V. Tkachenko, G.G. Varvanina, J. Altern. Complement. Med. 18 (2012) 583–588.

[25]J.K. Ko, C.C. Leung, J. Gastroenterol. Hepatol. 25 (2010) 1861–1868.

[26]S. Dugasani, M.R. Pichika, V.D. Nadarajah, M.K. Balijepalli, S. Tandra, J.N. Korlakunta, J. Ethnopharmacol. 127 (2010) 515–520.

[27]K. Ji, L. Fang, H. Zhao, Q. Li, Y. Shi, C. Xu, Y. Wang, L. Du, J. Wang, Q. Liu, Oxid. Med. Cell. Longev. 2017 (2017) 1480294.

[28]A. Hosseinzadeh, K. Bahrampour Juybari, M.J. Fatemi, T. Kamarul, A. Bagheri, N. Tekiyehmaroof, A.M. Sharifi, Cells Tissues Organs 204 (2017) 241–250.

[29]A.O. Abolaji, M. Ojo, T.T. Afolabi, M.D. Arowoogun, D. Nwawolor, E.O. Farombi, Chem. Biol. Interact. 270 (2017) 15–23.

[30]C. Lee, G.H. Park, C.-Y. Kim, J.-H. Jang, Food Chem. Toxicol. 49 (2011) 1261–1269.

[31]S. Peng, J. Yao, Y. Liu, D. Duan, X. Zhang, J. Fang, Food Funct. 6 (2015) 2813–2823.

[32]E. Schadich, J. Hlaváč, T. Volná, L. Varanasi, M. Hajdúch, P. Džubák, Biomed Res. Int. 2016 (2016) 2173275.

[33]S. Veda, K. Srinivasan, J. Funct. Foods 1 (2009) 394–398.

[34]S. Veda, K. Srinivasan, Br. J. Nutr. 105 (2011) 1429–1438.

[35]U.N.S. Prakash, K. Srinivasan, Journal of Trace Elements in Medicine and Biology 27 (2013) 184–190.

[36]U.N.S. Prakash, K. Srinivasan, Journal of the Science of Food and Agriculture 92 (2012) 503–510.

[37]U.N.S. Prakash, K. Srinivasan, Br. J. Nutr. 104 (2010) 31–39.