Rhodiola rosea Root

COMMON NAME

Roseroot / Golden Root / Arctic Root

BENEFITS

Supports brain function *

Supports resistance to mental fatigue *

Supports stress responses *

Supports neuroprotection *

Supports antioxidant defenses *

Supports cardioprotection*

Supports resistance to physical fatigue

Supports healthy aging *

DESCRIPTION

Rhodiola rosea is an adaptogenic herb with a long history of folk use in Eastern Europe and Asia. Rhodiola rosea contains many biologically active substances, including flavonoids, terpernes, and phenolic compounds; rosavins (rosavin, rosin, and rosarian)  and salidroside are Rhodiola’s major bioactive compounds. As a potent adaptogen, Rhodiola helps to promote homeostasis, resistance to fatigue, and resistance to stress; it also helps to support cognitive performance in contexts of fatigue and stress.[1,2]

KEY MECHANISMS

Brain function

Inhibits monoamine oxidase (MAO) A and B [3,4]

Inhibits acetylcholinesterase [4,5]

Upregulates serotonin levels [6]

Supports neurogenesis [7,8]

Cognitive function

Supports resistance to mental fatigue [9–12]

Supports cognitive performance and attention in contexts of stress and fatigue [9–12]

Stress and mood

Supports stress responses [9–13]

Regulates the levels of stress hormones and other stress response mediators [9,14–17]

Regulates β-endorphin signaling [1,17]

Supports mood [18–20]

Neuroprotection

Protects from cognitive impairments [5,21]

Protects against neurotoxic agents [5,8,21–23]

Protects from ischemia/hypoxia-induced damage [24,25]

Protects from glutamate-induced excitotoxicity [26–28]

Regulates cellular Ca²⁺ homeostasis [24,26]

Antioxidant defenses

Protects from oxidative damage [8,26,29,30]

Downregulates reactive oxygen species (ROS) levels [5,8,22,23,31,32]

Upregulates the levels of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPX], glutathione reductase [GR]) [5,21,33,34]

Replenishes glutathione and thioredoxin levels [21,23]

Downregulates NADPH oxidase [5]

Cardioprotection

Protects cardiac tissue from ischemia/hypoxia-induced damage [35,36]

Protects cardiac tissue from oxidative damage [33]

Physical stamina

Supports resistance to physical fatigue [10]

Supports endurance performance [37]

Supports exercise-induced antioxidant defenses [34]

Healthy aging and longevity

Extends lifespan (Drosophila melanogaster and Caenorhabditis elegans) [31,38,39]

Protects mitochondrial function [23,32,35]

  

REFERENCES

[1] G.S. Kelly, Altern. (2001) 293–302.
[2] A. Panossian, G. Wikman, J. Sarris,  17 (2010) 481–493.
[3] D. van Diermen, A. Marston, J. Bravo, M. Reist, P.-A. Carrupt, K. Hostettmann, J. 122 (2009) 397–401.
[4] D. van Diermen, A. Marston, J. Bravo, M. Reist, P.A. Carrupt, K. Hostettmann, 74 (2008) PA202.
[5] J. Zhang, Y.-F. Zhen, Pu-Bu-Ci-Ren, L.-G. Song, W.-N. Kong, T.-M. Shao, X. Li, X.-Q. Chai, 244 (2013) 70–81.\
[6] C. Mannucci, M. Navarra, E. Calzavara, A.P. Caputi, G. Calapai,  19 (2012) 1117–1124.
[7] Q.G. Chen, Y.S. Zeng, Z.Q. Qu, J.Y. Tang, Y.J. Qin, P. Chung, R. Wong, U. Hägg,  16 (2009) 830–838.
[8] Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y.-K. Lin, Y. Li, Z.-Q. Zhong, W.Y. Chan, PLoS One 7 (2012) e29641.
[9] E.M. Olsson, B. von Schéele, A.G. Panossian,  75 (2009) 105–112.
[10] A.A. Spasov, G.K. Wikman, V.B. Mandrikov, I.A. Mironova, V.V. Neumoin,  7 (2000) 85–89.
[11] V. Darbinyan, A. Kteyan, A. Panossian, E. Gabrielian, G. Wikman, H. Wagner,  7 (2000) 365–371.
[12] V.A. Shevtsov, B.I. Zholus, V.I. Shervarly, V.B. Vol’skij, Y.P. Korovin, M.P. Khristich, N.A. Roslyakova, G. Wikman,  10 (2003) 95–105.
[13] D. Edwards, A. Heufelder, A. Zimmermann, 26 (2012) 1220–1225.
[14] A. Panossian, M. Hambardzumyan, A. Hovhanissyan, G. Wikman, 2 (2007) 39–54.
[15] A. Panossian, G. Wikman, P. Kaur, A. Asea, 6 (2012) 6.
[16] A. Panossian, G. Wikman,  3 (2010) 188–224.
[17] I.B. Lishmanov, Z.V. Trifonova, A.N. Tsibin, L.V. Maslova, L.A. Dement’eva, Biull. Eksp. 103 (1987) 422–424.
[18] M. Cropley, A.P. Banks, J. Boyle, 29 (2015) 1934–1939.
[19] A. Bystritsky, L. Kerwin, J.D. Feusner, J. 14 (2008) 175–180.
[20] V. Darbinyan, G. Aslanyan, E. Amroyan, E. Gabrielyan, C. Malmström, A. Panossian, Nord. J. 61 (2007) 343–348.
[21] Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y. Li, P. Chung, 22 (2009) 318–326.
[22] S.I. Jang, H.O. Pae, B.M. Choi, G.S. Oh, S. Jeong, H.J. Lee, H.Y. Kim, K.J. Kang, Y.G. Yun, Y.C. Kim, H.T. Chung, 25 (2003) 295–304.
[23] L. Zhang, H. Yu, X. Zhao, X. Lin, C. Tan, G. Cao, Z. Wang, . Int. 57 (2010) 547–555.
[24] Zhang W.-S., Zhu L.-Q., Niu F.-L., Deng R.-C., Ma C.-X., Zhongguo Zhong Yao Za Zhi 29 (2004) 459–462.
[25] Zou Y.-Q., Cai Z.-Y., Mao Y.-F., Li J.-B., Deng X.-M., Zhong Xi Yi Jie He Xue Bao 7 (2009) 130–134.
[26] D.R. Palumbo, F. Occhiuto, F. Spadaro, C. Circosta. 26 (2012) 878–883.
[27] X. Chen, J. Liu, X. Gu, F. Ding, Brain Res. 1238 (2008) 189–198.
[28] L.-L. Cao, G.-H. Du, M.-W. Wang, J. Asian Nat. Prod. Res. 8 (2006) 159–165.
[29] L. Cai, H. Wang, Q. Li, Y. Qian, W. Yao, Acta. 40 (2008) 796–802.
[30] X. Chen, Q. Zhang, Q. Cheng, F. Ding, Mol. 332 (2009) 85–93.
[31] S.E. Schriner, A. Abrahamyan, A. Avanessian, I. Bussel, S. Maler, M. Gazarian, M.A. Holmbeck, M. Jafari,  43 (2009) 836–843.
[32] S. Yu, M. Liu, X. Gu, F. Ding, 28 (2008) 1067–1078.
[33] Y. Zhu, Y.-P. Shi, D. Wu, Y.-J. Ji, X. Wang, H.-L. Chen, S.-S. Wu, D.-J. Huang, W. Jiang, 30 (2011) 809–819.
[34] J. Xu, Y. Li,  6 (2012) 1195–1198.
[35] H. Zhong, H. Xin, L.-X. Wu, Y.-Z. Zhu, J. 114 (2010) 399–408.
[36] T. Wu, H. Zhou, Z. Jin, S. Bi, X. Yang, D. Yi, W. Liu, Eur. J. 613 (2009) 93–99.
[37] K. De Bock, B.O. Eijnde, M. Ramaekers, P. Hespel. 14 (2004) 298–307.
[38] M. Jafari, J.S. Felgner, I.I. Bussel, T. Hutchili, B. Khodayari, M.R. Rose, C. Vince-Cruz, L.D. Mueller, 10 (2007) 587–602.
[39] F.A.C. Wiegant, S. Surinova, E. Ytsma, M. Langelaar-Makkinje, G. Wikman, J.A. Post, 10 (2009) 27–42.