Rhodiola rosea Root

RHODIOLA ROSEA COMMON NAME

Golden Root | Arctic Root | Roseroot

TOP BENEFITS OF RHODIOLA ROSEA

Supports brain health and cognitive performance *
Supports adaptation to stress *
Supports mood *

WHAT IS RHODIOLA ROSEA?

Rhodiola rosea is an adaptogenic herb with a long history of folk use in Russia, Scandinavia, Baltic countries, and Asia. Its traditional uses included being a tonic to help counter fatigue and enhance the capacity for mental and physical work performance. R. rosea grows in cold regions and in mountainous parts of Europe through Central Asia. This ability to adapt to extreme temperatures and environments may be part of the reason R. rosea was studied (and eventually categorized as an adaptogen) by Russian researchers. Decades of research support this adaptogenic categorization, with R. rosea supporting resistance to a variety of different types of stressors. R. rosea contains many biologically active substances; Its rosavins (rosavin, rosin, and rosarian) and salidroside are the major bioactive compounds for producing standardized extracts. Rhodiola rosea main uses are in helping with adaptation to physically and mentally fatiguing circumstances and supporting energy, alertness, concentration, mental stamina, and mood.

NEUROHACKER’S RHODIOLA ROSEA SOURCING

Rhodiola rosea is an extract made from the plant's roots and uses about a 50:1 herb to extract ratio.  
Rhodiola rosea root extract is standardized to contain not less than 3% rosavins and 1% salidroside.
Rhodiola rosea root extract is non-GMO and vegan.

RHODIOLA ROSEA DOSING PRINCIPLES AND RATIONALE

We consider Rhodiola rosea to be an herbal adaptogen, so expect it to follow hormetic dosing principles. Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response (see Neurohacker Dosing Principles) and don’t follow “more is better” dosing principles. This is consistent with the comparative dosing information on R. rosea root, where for example, a dose of 370 mg supported capacity for mental work, while a higher dose had similar (but not greater) benefits [1]. Standardized R. rosea root extracts have most commonly been used in human studies at doses ranging from 100 mg to 400 mg/day—in the nootropic community a dose between 150-300 mg a day is commonly used. We use a dose within this range.

KEY MECHANISMS

Brain and cognitive function
Supports attention, capacity for mental work, and resistance to mental fatigue [1–6]
Supports mental and physical performance during stress [1–4]
Supports a healthy mood [7–9]
Supports serotonin levels [10]
Supports neuroplasticity and neurogenesis [11,12]
Supports neuroprotective functions [13–18]
Supports healthy levels of stress hormones and other stress response mediators [2,19–22]
Supports β-endorphin signaling [22,23]
Influences monoamine oxidase (MAO) A and B [24,25]
Influences acetylcholinesterase [13,25]

Physical stamina
Supports resistance to physical fatigue [3]
Supports endurance performance [26]
Supports exercise-induced antioxidant defenses [27]
 
Healthy aging
Supports mitochondrial function [17,28,29]
Supports antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPX], glutathione reductase [GR]) [13,15,27,30]
Supports glutathione and thioredoxin levels [15,17]
Extends lifespan (Drosophila melanogaster and Caenorhabditis elegans) [31–33]

Complementary ingredients
Ginkgo biloba for cognitive function [34]
Saffron for mood support [35]


REFERENCES

[1]V.A. Shevtsov, B.I. Zholus, V.I. Shervarly, V.B. Vol’skij, Y.P. Korovin, M.P. Khristich, N.A. Roslyakova, G. Wikman, Phytomedicine 10 (2003) 95–105.
[2]E.M. Olsson, B. von Schéele, A.G. Panossian, Planta Med. 75 (2009) 105–112.
[3]A.A. Spasov, G.K. Wikman, V.B. Mandrikov, I.A. Mironova, V.V. Neumoin, Phytomedicine 7 (2000) 85–89.
[4]V. Darbinyan, A. Kteyan, A. Panossian, E. Gabrielian, G. Wikman, H. Wagner, Phytomedicine 7 (2000) 365–371.
[5]D. Edwards, A. Heufelder, A. Zimmermann, Phytother. Res. 26 (2012) 1220–1225.
[6]T. Koop, A. Dienel, M. Heldmann, T.F. Münte, Phytother. Res. 34 (2020) 3287–3297.
[7]M. Cropley, A.P. Banks, J. Boyle, Phytother. Res. 29 (2015) 1934–1939.
[8]A. Bystritsky, L. Kerwin, J.D. Feusner, J. Altern. Complement. Med. 14 (2008) 175–180.
[9]V. Darbinyan, G. Aslanyan, E. Amroyan, E. Gabrielyan, C. Malmström, A. Panossian, Nord. J. Psychiatry 61 (2007) 343–348.
[10]C. Mannucci, M. Navarra, E. Calzavara, A.P. Caputi, G. Calapai, Phytomedicine 19 (2012) 1117–1124.
[11]Q.G. Chen, Y.S. Zeng, Z.Q. Qu, J.Y. Tang, Y.J. Qin, P. Chung, R. Wong, U. Hägg, Phytomedicine 16 (2009) 830–838.
[12]C. Concerto, C. Infortuna, M.R.A. Muscatello, A. Bruno, R. Zoccali, E. Chusid, E. Aguglia, F. Battaglia, Complement. Ther. Med. 41 (2018) 141–146.
[13]J. Zhang, Y.-F. Zhen, Pu-Bu-Ci-Ren, L.-G. Song, W.-N. Kong, T.-M. Shao, X. Li, X.-Q. Chai, Behav. Brain Res. 244 (2013) 70–81.
[14]Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y.-K. Lin, Y. Li, Z.-Q. Zhong, W.Y. Chan, PLoS One 7 (2012) e29641.
[15]Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y. Li, P. Chung, Biomed. Environ. Sci. 22 (2009) 318–326.
[16]S.I. Jang, H.O. Pae, B.M. Choi, G.S. Oh, S. Jeong, H.J. Lee, H.Y. Kim, K.J. Kang, Y.G. Yun, Y.C. Kim, H.T. Chung, Immunopharmacol. Immunotoxicol. 25 (2003) 295–304.
[17]L. Zhang, H. Yu, X. Zhao, X. Lin, C. Tan, G. Cao, Z. Wang, Neurochem. Int. 57 (2010) 547–555.
[18]D.R. Palumbo, F. Occhiuto, F. Spadaro, C. Circosta, Phytother. Res. 26 (2012) 878–883.
[19]A. Panossian, M. Hambardzumyan, A. Hovhanissyan, G. Wikman, Drug Target Insights 2 (2007) 39–54.
[20]A. Panossian, G. Wikman, P. Kaur, A. Asea, Front. Neurosci. 6 (2012) 6.
[21]A. Panossian, G. Wikman, Pharmaceuticals 3 (2010) 188–224.
[22]I.B. Lishmanov, Z.V. Trifonova, A.N. Tsibin, L.V. Maslova, L.A. Dement’eva, Biull. Eksp. Biol. Med. 103 (1987) 422–424.
[23]G.S. Kelly, Altern. Med. Rev. 6 (2001) 293–302.
[24]D. van Diermen, A. Marston, J. Bravo, M. Reist, P.-A. Carrupt, K. Hostettmann, J. Ethnopharmacol. 122 (2009) 397–401.
[25]D. van Diermen, A. Marston, J. Bravo, M. Reist, P.A. Carrupt, K. Hostettmann, Planta Med. 74 (2008) PA202.
[26]K. De Bock, B.O. Eijnde, M. Ramaekers, P. Hespel, Int. J. Sport Nutr. Exerc. Metab. 14 (2004) 298–307.
[27]J. Xu, Y. Li, Mol. Med. Rep. 6 (2012) 1195–1198.
[28]S. Yu, M. Liu, X. Gu, F. Ding, Cell. Mol. Neurobiol. 28 (2008) 1067–1078.
[29]H. Zhong, H. Xin, L.-X. Wu, Y.-Z. Zhu, J. Pharmacol. Sci. 114 (2010) 399–408.
[30]Y. Zhu, Y.-P. Shi, D. Wu, Y.-J. Ji, X. Wang, H.-L. Chen, S.-S. Wu, D.-J. Huang, W. Jiang, DNA Cell Biol. 30 (2011) 809–819.
[31]S.E. Schriner, A. Abrahamyan, A. Avanessian, I. Bussel, S. Maler, M. Gazarian, M.A. Holmbeck, M. Jafari, Free Radic. Res. 43 (2009) 836–843.
[32]M. Jafari, J.S. Felgner, I.I. Bussel, T. Hutchili, B. Khodayari, M.R. Rose, C. Vince-Cruz, L.D. Mueller, Rejuvenation Res. 10 (2007) 587–602.
[33]F.A.C. Wiegant, S. Surinova, E. Ytsma, M. Langelaar-Makkinje, G. Wikman, J.A. Post, Biogerontology 10 (2009) 27–42.
[34]H.M. Al-Kuraishy, J Intercult Ethnopharmacol 5 (2016) 7–13.
[35]M. Bangratz, S.A. Abdellah, A. Berlin, C. Blondeau, A. Guilbot, M. Dubourdeaux, P. Lemoine, Neuropsychiatr. Dis. Treat. 14 (2018) 1821.