Trans-Resveratrol (trans-3, 5, 4'-trihydroxystilbene) is usually just called resveratrol. It is a stilbenoid, a type of natural polyphenol found in plants. Resveratrol has been the subject of thousands of pre-clinical and clinical research studies. It is best known for being a calorie restriction mimetic (i.e., supports healthy aging functions), and for supporting metabolism, heart health, immunity, and cognition. Resveratrol is a defense compound that plants make more of when exposed to environmental stressors. It toughens them up, making them more resistant to stress. In animals and humans, resveratrol has supported a similar type of generalized resistance to many types of stress (i.e., adaptogen properties) when consumed in low amounts.*


Supports healthy mitochondrial function*

Supports metabolic health*

Supports healthy cellular responses to stress*

Supports healthy aging*


Trans-Resveratrol is produced using an innovative yeast fermentation process resulting in a high-purity finished product (>98% pure trans-resveratrol).

Trans-Resveratrol is non-GMO, gluten-free and vegan.


We don’t view resveratrol as a “more is better” compound. It is a hormetic substance (see Neurohacker Dosing Principles), which implies that supplementing the diet in amounts more than a low-to-moderate amount is not necessary. Our goal with resveratrol, as with all ingredient choices, is to select the lowest serving needed to produce desired benefits, especially in the context of ingredient complementarity. Studies have used resveratrol alone in amounts as low as 10 mg and as high as several grams. We believe, for generally healthy persons, it is better to supplement resveratrol in amounts that are closer to the lower end, rather than the higher end, of this range. At lower amounts, resveratrol seems to signal cells that the environment may be more stressful, which causes cells to adapt in ways that support better function. Immune signaling (i.e., the communication molecules made by white blood cells) is an example, where low amounts of resveratrol have been sufficient to support healthy signaling [1,2].* 


Supports mitochondrial structure and function*

Supports healthy mitochondrial structure* [3–5]

Supports healthy mitochondrial function* [4,6,7]

Supports transcription factors associated with mitochondrial biogenesis (PGC-1α, NRF1, NRF2, TFAM)* [4–11]

Supports mitochondrial metabolic pathways of cell energy production* [4,6,8,10–12]

Supports NAD+ pool* [6,7,12]

Supports brain function*

Supports cognitive function in older adults* [13–21] 

Supports healthy cerebrovascular function* [13,20,22,23]

Supports neuroplasticity mechanisms* [24–26]

Supports brain-derived neurotrophic factor (BDNF) levels* [16–18,26–34]

Supports neuroendocrine signaling* [32,34]

Supports neuroprotective functions* [29,34–37]

Supports healthy neuroimmune and microglial function* [38–46]

Supports healthy immune function*

Supports innate immunity* [47–60]

Supports adaptive immunity* [60–66]

Supports immune signaling* [1,2,61,67–72]

Supports immune tolerance* [60–65,73–79]

Supports a healthy gut microbiota*

Supports healthy gut microbiota* [80–100]

Supports gut barrier function* [83]

Supports mucosal immunity* [101–103]

Supports healthy gut immune signaling* [86]

Supports skin health*

Supports healthy dermal ECM structure (collagen, elastin)* [104–106]  

Influences melanin production* [107–109]

Supports skin antioxidant defenses* [105,106,110,111] 

Supports skin Nrf2 signaling and phase II defenses* [104,110,112]  

Supports healthy skin immune signaling* [105,106,113]

Supports skin in adapting to environmental stress* [114–121]

Influences skin autophagy* [122]

Promotes healthy aging and longevity*

Supports Nrf2 signaling and antioxidant defenses* [37,123–134]

Supports stem cell function* [135–147]

Supports telomerase activity* [135–137,148,149]

Supports anti-senescence functions* [136,137,142,149]

Supports AMPK signaling* [5–8,10–12,150,151]

Supports SIRT1* [6,8,9,11,150,152–154]

Supports mitochondrial uncoupling and thermogenesis* [4,7]

Supports clock gene expression and circadian rhythms* [155–158]

Complementary ingredients*

Apigenin - resveratrol is an apigenin bioenhancer* [159]

Piperine as a bioenhancer [74,160–163] and for cognitive function* [164]

Hawthorn for heart function support* [165]

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


[1]H.S. Zahedi, S. Jazayeri, R. Ghiasvand, M. Djalali, M.R. Eshraghian, Int. J. Prev. Med. 4 (2013) S1–4.

[2]H. Ghanim, C.L. Sia, S. Abuaysheh, K. Korzeniewski, P. Patnaik, A. Marumganti, A. Chaudhuri, P. Dandona, J. Clin. Endocrinol. Metab. 95 (2010) E1–8.

[3]R.M. Pollack, N. Barzilai, V. Anghel, A.S. Kulkarni, A. Golden, P. O’Broin, D.A. Sinclair, M.S. Bonkowski, A.J. Coleville, D. Powell, S. Kim, R. Moaddel, D. Stein, K. Zhang, M. Hawkins, J.P. Crandall, J. Gerontol. A Biol. Sci. Med. Sci. 72 (2017) 1703–1709.

[4]M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109–1122.

[5]J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Nature 444 (2006) 337–342.

[6]N.L. Price, A.P. Gomes, A.J.Y. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, B.P. Hubbard, A.T. Varela, J.G. Davis, B. Varamini, A. Hafner, R. Moaddel, A.P. Rolo, R. Coppari, C.M. Palmeira, R. de Cabo, J.A. Baur, D.A. Sinclair, Cell Metab. 15 (2012) 675–690.

[7]J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554–563.

[8]S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen, Cell Metab. 14 (2011) 612–622.

[9]T.D. Scribbans, J.K. Ma, B.A. Edgett, K.A. Vorobej, A.S. Mitchell, J.G.E. Zelt, C.A. Simpson, J. Quadrilatero, B.J. Gurd, Appl. Physiol. Nutr. Metab. 39 (2014) 1305–1313.

[10]B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217–7222.

[11]J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833–42.

[12]S.-J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, J.H. Chung, Cell 148 (2012) 421–433.

[13]R.H.X. Wong, D. Raederstorff, P.R.C. Howe, Nutrients 8 (2016).

[14]S.D. Anton, N. Ebner, J.M. Dzierzewski, Z.Z. Zlatar, M.J. Gurka, V.M. Dotson, J. Kirton, R.T. Mankowski, M. Marsiske, T.M. Manini, J. Altern. Complement. Med. 24 (2018) 725–732.

[15]Y. Yazir, T. Utkan, N. Gacar, F. Aricioglu, Physiol. Behav. 138 (2015) 297–304.

[16]J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Endocrine Journal 62 (2015) 927–938.

[17]Y.-N. Zhao, W.-F. Li, F. Li, Z. Zhang, Y.-D. Dai, A.-L. Xu, C. Qi, J.-M. Gao, J. Gao, Biochem. Biophys. Res. Commun. 435 (2013) 597–602.

[18]J. Shen, L. Xu, C. Qu, H. Sun, J. Zhang, Behav. Brain Res. 349 (2018) 1–7.

[19]J.J. Thaung Zaw, P.R. Howe, R.H. Wong, Clin. Nutr. 40 (2021) 820–829.

[20]H.M. Evans, P.R.C. Howe, R.H.X. Wong, Nutrients 9 (2017).

[21]A.V. Witte, L. Kerti, D.S. Margulies, A. Flöel, J. Neurosci. 34 (2014) 7862–7870.

[22]D.O. Kennedy, E.L. Wightman, J.L. Reay, G. Lietz, E.J. Okello, A. Wilde, C.F. Haskell, Am. J. Clin. Nutr. 91 (2010) 1590–1597.

[23]E.L. Wightman, C.F. Haskell-Ramsay, J.L. Reay, G. Williamson, T. Dew, W. Zhang, D.O. Kennedy, Br. J. Nutr. 114 (2015) 1427–1437.

[24]L. Xu, Y. Yang, L. Gao, J. Zhao, Y. Cai, J. Huang, S. Jing, X. Bao, Y. Wang, J. Gao, H. Xu, X. Fan, Biochim. Biophys. Acta 1852 (2015) 1298–1310.

[25]N.B. Bottari, M.R.C. Schetinger, M.M. Pillat, T.V. Palma, H. Ulrich, M.S. Alves, V.M. Morsch, C. Melazzo, L.D. de Barros, J.L. Garcia, A.S. Da Silva, Mol. Neurobiol. 56 (2019) 2328–2338.

[26]S. Madhyastha, S. Sekhar, G. Rao, Int. J. Dev. Neurosci. 31 (2013) 580–585.

[27]M. Wiciński, M. Socha, M. Walczak, E. Wódkiewicz, B. Malinowski, S. Rewerski, K. Górski, K. Pawlak-Osińska, Nutrients 10 (2018).

[28]M. Rahvar, M. Nikseresht, S.M. Shafiee, F. Naghibalhossaini, M. Rasti, M.R. Panjehshahin, A.A. Owji, Neurochem. Res. 36 (2011) 761–765.

[29]L. Ge, L. Liu, H. Liu, S. Liu, H. Xue, X. Wang, L. Yuan, Z. Wang, D. Liu, Eur. J. Pharmacol. 768 (2015) 49–57.

[30]G. Li, G. Wang, J. Shi, X. Xie, N. Fei, L. Chen, N. Liu, M. Yang, J. Pan, W. Huang, Y. Xu, Neuropharmacology 133 (2018) 181–188.

[31]X.-H. Yang, S.-Q. Song, Y. Xu, Neuropsychiatr. Dis. Treat. 13 (2017) 2727–2736.

[32]S.H. Ali, R.M. Madhana, A. K V., E.R. Kasala, L.N. Bodduluru, S. Pitta, J.R. Mahareddy, M. Lahkar, Steroids 101 (2015) 37–42.

[33]J. Song, S.Y. Cheon, W. Jung, W.T. Lee, J.E. Lee, Int. J. Mol. Sci. 15 (2014) 15512–15529.

[34]C. Pang, L. Cao, F. Wu, L. Wang, G. Wang, Y. Yu, M. Zhang, L. Chen, W. Wang, W. Lv, L. Chen, J. Zhu, J. Pan, H. Zhang, Y. Xu, L. Ding, Neuropharmacology 97 (2015) 447–456.

[35]G. Wang, L. Chen, X. Pan, J. Chen, L. Wang, W. Wang, R. Cheng, F. Wu, X. Feng, Y. Yu, H.-T. Zhang, J.M. O’Donnell, Y. Xu, Oncotarget 7 (2016).

[36]Q. Zhang, X. Wang, X. Bai, Y. Xie, T. Zhang, S. Bo, X. Chen, Mol. Med. Rep. 16 (2017) 2095–2100.

[37]R. Moldzio, K. Radad, C. Krewenka, B. Kranner, J.C. Duvigneau, W.-D. Rausch, J. Neural Transm. 120 (2013) 1271–1280.

[38]S. Ma, L. Fan, J. Li, B. Zhang, Z. Yan, Int. J. Neurosci. 130 (2020) 817–825.

[39]L. Feng, L. Zhang, DNA Cell Biol. 38 (2019) 874–879.

[40]B. Qi, C. Shi, J. Meng, S. Xu, J. Liu, Int. J. Biochem. Cell Biol. 103 (2018) 56–64.

[41]J. Wiedemann, K. Rashid, T. Langmann, Biochem. Biophys. Res. Commun. 501 (2018) 239–245.

[42]X. Zhang, Q. Wu, Q. Zhang, Y. Lu, J. Liu, W. Li, S. Lv, M. Zhou, X. Zhang, C. Hang, Front. Neurosci. 11 (2017) 611.

[43]L.-L. Wang, D.-L. Shi, H.-Y. Gu, M.-Z. Zheng, J. Hu, X.-H. Song, Y.-L. Shen, Y.-Y. Chen, Mol. Med. Rep. 13 (2016) 4051–4057.

[44]L. Tao, Q. Ding, C. Gao, X. Sun, Int. Immunopharmacol. 34 (2016) 165–172.

[45]M. Kodali, V.K. Parihar, B. Hattiangady, V. Mishra, B. Shuai, A.K. Shetty, Sci. Rep. 5 (2015) 8075.

[46]J. Abraham, R.W. Johnson, Rejuvenation Res. 12 (2009) 445–453.

[47]J. Li, B. Wang, Y. Luo, Q. Zhang, Y. Bian, R. Wang, Mol. Immunol. 122 (2020) 156–162.

[48]Y.-F. Zhang, Q.-M. Liu, Y.-Y. Gao, B. Liu, H. Liu, M.-J. Cao, X.-W. Yang, G.-M. Liu, Food Funct. 10 (2019) 2030–2039.

[49]S.-Y. Han, J.-Y. Bae, S.-H. Park, Y.-H. Kim, J.H.Y. Park, Y.-H. Kang, J. Nutr. 143 (2013) 632–639.

[50]D.M. André, M.C. Calixto, C. Sollon, E.C. Alexandre, L.O. Leiria, N. Tobar, G.F. Anhê, E. Antunes, Int. Immunopharmacol. 38 (2016) 298–305.

[51]K. Bozdemir, E. Şahin, N. Altintoprak, N.B. Muluk, B.P. Cengiz, M. Acar, C. Cingi, Clin. Invest. Med. 39 (2016) E63–72.

[52]J. Chen, H. Zhou, J. Wang, B. Zhang, F. Liu, J. Huang, J. Li, J. Lin, J. Bai, R. Liu, Int. Immunopharmacol. 25 (2015) 43–48.

[53]Y. Nakagami, S. Suzuki, J.L. Espinoza, L. Vu Quang, M. Enomoto, S. Takasugi, A. Nakamura, T. Nakayama, H. Tani, I. Hanamura, A. Takami, Nutrients 11 (2019).

[54]S. Liu, Y. Du, K. Shi, Y. Yang, Z. Yang, Am. J. Transl. Res. 11 (2019) 5212–5226.

[55]C. Leischner, M. Burkard, M.M. Pfeiffer, U.M. Lauer, C. Busch, S. Venturelli, Nutr. J. 15 (2016) 47.

[56]Q. Li, T. Huyan, L.-J. Ye, J. Li, J.-L. Shi, Q.-S. Huang, J. Agric. Food Chem. 62 (2014) 10928–10935.

[57]T. Li, G.-X. Fan, W. Wang, T. Li, Y.-K. Yuan, Int. Immunopharmacol. 7 (2007) 1221–1231.

[58]R. Falchetti, M.P. Fuggetta, G. Lanzilli, M. Tricarico, G. Ravagnan, Life Sci. 70 (2001) 81–96.

[59]T.-H. Huang, C.-C. Chen, H.-M. Liu, T.-Y. Lee, S.-H. Shieh, Sci. Rep. 7 (2017) 2705.

[60]M. Shabani, A. Sadeghi, H. Hosseini, M. Teimouri, R. Babaei Khorzoughi, P. Pasalar, R. Meshkani, Sci. Rep. 10 (2020) 3791.

[61]J.L. Espinoza, L.Q. Trung, P.T. Inaoka, K. Yamada, D.T. An, S. Mizuno, S. Nakao, A. Takami, Oxid. Med. Cell. Longev. 2017 (2017) 6781872.

[62]N.-H. Guo, X. Fu, F.-M. Zi, Y. Song, S. Wang, J. Cheng, Int. Immunopharmacol. 73 (2019) 181–192.

[63]B.B.-C. Weng, W.-S. Lin, J.-C. Chang, R.Y.-Y. Chiou, Int. J. Mol. Med. 38 (2016) 1895–1904.

[64]H. Yang, A. Zhang, Y. Zhang, S. Ma, C. Wang, J. Stroke Cerebrovasc. Dis. 25 (2016) 1914–1921.

[65]J. Yao, C. Wei, J.-Y. Wang, R. Zhang, Y.-X. Li, L.-S. Wang, World J. Gastroenterol. 21 (2015) 6572–6581.

[66]J. Yuan, L. Lu, Z. Zhang, S. Zhang, Rejuvenation Res. 15 (2012) 507–515.

[67]J. Tomé-Carneiro, M. Gonzálvez, M. Larrosa, M.J. Yáñez-Gascón, F.J. García-Almagro, J.A. Ruiz-Ros, M.T. García-Conesa, F.A. Tomás-Barberán, J.C. Espín, Am. J. Cardiol. 110 (2012) 356–363.

[68]R.C.S. Macedo, A. Vieira, D.P. Marin, R. Otton, Chem. Biol. Interact. 227 (2015) 89–95.

[69]E. Jo, R. Bartosh, A.T. Auslander, D. Directo, A. Osmond, M.W. Wong, Sports (Basel) 7 (2019).

[70]S. Bo, V. Ponzo, G. Ciccone, A. Evangelista, F. Saba, I. Goitre, M. Procopio, G.F. Pagano, M. Cassader, R. Gambino, Pharmacol. Res. 111 (2016) 896–905.

[71]A.Z. Javid, R. Hormoznejad, H.A. Yousefimanesh, M.H. Haghighi-Zadeh, M. Zakerkish, Diabetes Metab. Syndr. 13 (2019) 2769–2774.

[72]S. Bo, G. Ciccone, A. Castiglione, R. Gambino, F. De Michieli, P. Villois, M. Durazzo, P. Cavallo-Perin, M. Cassader, Curr. Med. Chem. 20 (2013) 1323–1331.

[73]A.L. de B. Oliveira, V.V.S. Monteiro, K.C. Navegantes-Lima, J.F. Reis, R. de S. Gomes, D.V.S. Rodrigues, S.L. de F. Gaspar, M.C. Monteiro, Nutrients 9 (2017).

[74]N. Pannu, A. Bhatnagar, Inflammopharmacology 28 (2020) 719–735.

[75]K.A.O. Gandy, J. Zhang, P. Nagarkatti, M. Nagarkatti, J. Neuroimmune Pharmacol. 14 (2019) 462–477.

[76]Z.-L. Wang, X.-F. Luo, M.-T. Li, D. Xu, S. Zhou, H.-Z. Chen, N. Gao, Z. Chen, L.-L. Zhang, X.-F. Zeng, PLoS One 9 (2014) e114792.

[77]Z. Fonseca-Kelly, M. Nassrallah, J. Uribe, R.S. Khan, K. Dine, M. Dutt, K.S. Shindler, Front. Neurol. 3 (2012) 84.

[78]K.S. Shindler, E. Ventura, M. Dutt, P. Elliott, D.C. Fitzgerald, A. Rostami, J. Neuroophthalmol. 30 (2010) 328–339.

[79]Z. Wenbin, G. Guojun, West Indian Med. J. 63 (2014) 20–25.

[80]Y.-L. Tain, W.-C. Lee, K.L.H. Wu, S. Leu, J.Y.H. Chan, Mol. Nutr. Food Res. (2018) e1800066.

[81]Y. Zheng, W. Wu, G. Hu, L. Qiu, S. Meng, C. Song, L. Fan, Z. Zhao, X. Bing, J. Chen, Fish Shellfish Immunol. 77 (2018) 200–207.

[82]L. Zhao, Q. Zhang, W. Ma, F. Tian, H. Shen, M. Zhou, Food Funct. 8 (2017) 4644–4656.

[83]J.K. Bird, D. Raederstorff, P. Weber, R.E. Steinert, Adv. Nutr. 8 (2017) 839–849.

[84]A.S. Korsholm, T.N. Kjær, M.J. Ornstrup, S.B. Pedersen, Int. J. Mol. Sci. 18 (2017).

[85]M.M. Sung, T.T. Kim, E. Denou, C.-L.M. Soltys, S.M. Hamza, N.J. Byrne, G. Masson, H. Park, D.S. Wishart, K.L. Madsen, J.D. Schertzer, J.R.B. Dyck, Diabetes 66 (2017) 418–425.

[86]M. Larrosa, M.J. Yañéz-Gascón, M.V. Selma, A. González-Sarrías, S. Toti, J.J. Cerón, F. Tomás-Barberán, P. Dolara, J.C. Espín, J. Agric. Food Chem. 57 (2009) 2211–2220.

[87]J.M. Walker, P. Eckardt, J.O. Aleman, J.C. da Rosa, Y. Liang, T. Iizumi, S. Etheve, M.J. Blaser, J. L Breslow, P.R. Holt, Transl. Res. 4 (2019) 122–135.

[88]P. Wang, J. Wang, D. Li, W. Ke, F. Chen, X. Hu, J. Nutr. Biochem. 81 (2020) 108363.

[89]H.R. Alrafas, P.B. Busbee, K.N. Chitrala, M. Nagarkatti, P. Nagarkatti, J. Clin. Med. Res. 9 (2020).

[90]K. Chen, H. Zhao, L. Shu, H. Xing, C. Wang, C. Lu, G. Song, Int. J. Food Sci. Nutr. (2020) 1–14.

[91]P. Wang, J. Gao, W. Ke, J. Wang, D. Li, R. Liu, Y. Jia, X. Wang, X. Chen, F. Chen, X. Hu, Free Radic. Biol. Med. 156 (2020) 83–98.

[92]S. Hui, Y. Liu, L. Huang, L. Zheng, M. Zhou, H. Lang, X. Wang, L. Yi, M. Mi, Int. J. Obes. 44 (2020) 1678–1690.

[93]Y. Ma, S. Liu, H. Shu, J. Crawford, Y. Xing, F. Tao, Brain Behav. Immun. 87 (2020) 455–464.

[94]F. Li, Y. Han, X. Cai, M. Gu, J. Sun, C. Qi, T. Goulette, M. Song, Z. Li, H. Xiao, Food Funct. 11 (2020) 1063–1073.

[95]N. Sreng, S. Champion, J.-C. Martin, S. Khelaifia, J.E. Christensen, R. Padmanabhan, V. Azalbert, V. Blasco-Baque, P. Loubieres, L. Pechere, J.-F. Landrier, R. Burcelin, E. Sérée, J. Nutr. Biochem. 72 (2019) 108218.

[96]H.R. Alrafas, P.B. Busbee, M. Nagarkatti, P.S. Nagarkatti, J. Leukoc. Biol. 106 (2019) 467–480.

[97]J.D. Jaimes, V. Jarosova, O. Vesely, C. Mekadim, J. Mrazek, P. Marsik, J. Killer, K. Smejkal, P. Kloucek, J. Havlik, Molecules 24 (2019).

[98]P. Wang, D. Li, W. Ke, D. Liang, X. Hu, F. Chen, Int. J. Obes. 44 (2020) 213–225.

[99]C.L. Campbell, R. Yu, F. Li, Q. Zhou, D. Chen, C. Qi, Y. Yin, J. Sun, Diabetes Metab. Syndr. Obes. 12 (2019) 97–107.

[100]W. Liao, X. Yin, Q. Li, H. Zhang, Z. Liu, X. Zheng, L. Zheng, X. Feng, Molecules 23 (2018).

[101]Z. Gan, W. Wei, Y. Li, J. Wu, Y. Zhao, L. Zhang, T. Wang, X. Zhong, Molecules 24 (2019).

[102]J. Al Azzaz, A. Rieu, V. Aires, D. Delmas, J. Chluba, P. Winckler, M.-A. Bringer, J. Lamarche, D. Vervandier-Fasseur, F. Dalle, P. Lapaquette, J. Guzzo, Front. Immunol. 9 (2018) 3149.

[103]Y. Mayangsari, T. Suzuki, J. Agric. Food Chem. 66 (2018) 12666–12674.

[104]J. Kim, J. Oh, J.N. Averilla, H.J. Kim, J.-S. Kim, J.-S. Kim, J. Food Sci. 84 (2019) 1600–1608.

[105]E.D. Lephart, M.B. Andrus, Exp. Biol. Med. 242 (2017) 1482–1489.

[106]E.D. Lephart, J.M. Sommerfeldt, M.B. Andrus, J. Funct. Foods 10 (2014) 377–384.

[107]T.H. Lee, J.O. Seo, S.-H. Baek, S.Y. Kim, Biomol. Ther. 22 (2014) 35–40.

[108]Q. Liu, C. Kim, Y.H. Jo, S.B. Kim, B.Y. Hwang, M.K. Lee, Molecules 20 (2015) 16933–16945.

[109]R.A. Newton, A.L. Cook, D.W. Roberts, J.H. Leonard, R.A. Sturm, J. Invest. Dermatol. 127 (2007) 2216–2227.

[110]J. Soeur, J. Eilstein, G. Léreaux, C. Jones, L. Marrot, Free Radic. Biol. Med. 78 (2015) 213–223.

[111]Y. Ido, A. Duranton, F. Lan, K.A. Weikel, L. Breton, N.B. Ruderman, PLoS One 10 (2015) e0115341.

[112]Y. Liu, F. Chan, H. Sun, J. Yan, D. Fan, D. Zhao, J. An, D. Zhou, Eur. J. Pharmacol. 650 (2011) 130–137.

[113]X. Zhu, Q. Liu, M. Wang, M. Liang, X. Yang, X. Xu, H. Zou, J. Qiu, PLoS One 6 (2011) e27081.

[114]K. Park, J.-H. Lee, Oncol. Rep. 19 (2008) 413–417.

[115]F. Zhou, X. Huang, Y. Pan, D. Cao, C. Liu, Y. Liu, A. Chen, Biochem. Biophys. Res. Commun. 499 (2018) 662–668.

[116]S. Reagan-Shaw, F. Afaq, M.H. Aziz, N. Ahmad, Oncogene 23 (2004) 5151–5160.

[117]M.A. Choi, J.K. Seok, J.W. Lee, S.Y. Lee, Y.M. Kim, Y.C. Boo, J. Soc. Cosmet. Sci. Korea 44 (2018) 249–258.

[118]M.-H. Tsai, L.-F. Hsu, C.-W. Lee, Y.-C. Chiang, M.-H. Lee, J.-M. How, C.-M. Wu, C.-L. Huang, I.-T. Lee, Int. J. Biochem. Cell Biol. 88 (2017) 113–123.

[119]J.-W. Shin, H.-S. Lee, J.-I. Na, C.-H. Huh, K.-C. Park, H.-R. Choi, Int. J. Mol. Sci. 21 (2020).

[120]C. Sticozzi, G. Belmonte, F. Cervellati, X.M. Muresan, F. Pessina, Y. Lim, H.J. Forman, G. Valacchi, Free Radic. Biol. Med. 69 (2014) 50–57.

[121]C. Sticozzi, F. Cervellati, X.M. Muresan, C. Cervellati, G. Valacchi, Food Funct. 5 (2014) 2348–2356.

[122]D.K. Mostafa, S.I. Omar, A.A. Abdellatif, O.A. Sorour, O.A. Nayel, M.R.A. Al Obaidi, Curr. Mol. Pharmacol. (2020).

[123]S. Seyyedebrahimi, H. Khodabandehloo, E. Nasli Esfahani, R. Meshkani, Acta Diabetol. 55 (2018) 341–353.

[124]T. Farkhondeh, S.L. Folgado, A.M. Pourbagher-Shahri, M. Ashrafizadeh, S. Samarghandian, Biomed. Pharmacother. 127 (2020) 110234.

[125]X. Wang, H. Fang, G. Xu, Y. Yang, R. Xu, Q. Liu, X. Xue, J. Liu, H. Wang, Diabetes Metab. Syndr. Obes. 13 (2020) 1061–1075.

[126]M. Sami-Ur-Rasheed, M.K. Tripathi, D.K. Patel, M.P. Singh, Protein Pept. Lett. (2020).

[127]H. Hosseini, M. Teimouri, M. Shabani, M. Koushki, R. Babaei Khorzoughi, F. Namvarjah, P. Izadi, R. Meshkani, Int. J. Biochem. Cell Biol. 119 (2020) 105667.

[128]N. Lian, S. Zhang, J. Huang, T. Lin, Q. Lin, Lung 198 (2020) 323–331.

[129]G. Wang, X. Xie, L. Yuan, J. Qiu, W. Duan, B. Xu, X. Chen, Biofactors 46 (2020) 441–453.

[130]A.A. Javkhedkar, Y. Quiroz, B. Rodriguez-Iturbe, N.D. Vaziri, M.F. Lokhandwala, A.A. Banday, Am. J. Physiol. Regul. Integr. Comp. Physiol. 308 (2015) R840–6.

[131]B. Wang, J. Sun, L. Li, J. Zheng, Y. Shi, G. Le, Food Funct. 5 (2014) 1452–1463.

[132]P. Brasnyó, G.A. Molnár, M. Mohás, L. Markó, B. Laczy, J. Cseh, E. Mikolás, I.A. Szijártó, A. Mérei, R. Halmai, L.G. Mészáros, B. Sümegi, I. Wittmann, Br. J. Nutr. 106 (2011) 383–389.

[133]Y.K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71 (2002) 245–249.

[134]S.S. Leonard, C. Xia, B.-H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, X. Shi, Biochem. Biophys. Res. Commun. 309 (2003) 1017–1026.

[135]V.P. Pearce, J. Sherrell, Z. Lou, L. Kopelovich, W.E. Wright, J.W. Shay, Oncogene 27 (2008) 2365–2374.

[136]L. Xia, X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, C.L. Zeng, F.R. Zhang, J.Z. Chen, Br. J. Pharmacol. 155 (2008) 387–394.

[137]X.-B. Wang, L. Zhu, J. Huang, Y.-G. Yin, X.-Q. Kong, Q.-F. Rong, A.-W. Shi, K.-J. Cao, Chin. Med. J. 124 (2011) 4310–4315.

[138]M.L. Balestrieri, C. Schiano, F. Felice, A. Casamassimi, A. Balestrieri, L. Milone, L. Servillo, C. Napoli, J. Biochem. 143 (2008) 179–186.

[139]L. Ling, S. Gu, Y. Cheng, Mol. Med. Rep. 15 (2017) 1188–1194.

[140]X.-H. Chen, Z.-G. Shi, H.-B. Lin, F. Wu, F. Zheng, C.-F. Wu, M.-W. Huang, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 6352–6359.

[141]H. Zhang, Z. Zhai, Y. Wang, J. Zhang, H. Wu, Y. Wang, C. Li, D. Li, L. Lu, X. Wang, J. Chang, Q. Hou, Z. Ju, D. Zhou, A. Meng, Free Radic. Biol. Med. 54 (2013) 40–50.

[142]Y.-J. Lv, Y. Yang, B.-D. Sui, C.-H. Hu, P. Zhao, L. Liao, J. Chen, L.-Q. Zhang, T.-T. Yang, S.-F. Zhang, Y. Jin, Theranostics 8 (2018) 2387–2406.

[143]H. Liu, S. Zhang, L. Zhao, Y. Zhang, Q. Li, X. Chai, Y. Zhang, Stem Cells Int. 2016 (2016) 2524092.

[144]I.I. Suvorova, A.R. Knyazeva, A.V. Petukhov, N.D. Aksenov, V.A. Pospelov, Cell Death Discov 5 (2019) 61.

[145]Y.-J. Wang, P. Zhao, B.-D. Sui, N. Liu, C.-H. Hu, J. Chen, C.-X. Zheng, A.-Q. Liu, K. Xuan, Y.-P. Pan, Y. Jin, Exp. Mol. Med. 50 (2018) 1–15.

[146]T.-S. Chen, C.-H. Kuo, C.H. Day, L.-F. Pan, R.-J. Chen, B.-C. Chen, V.V. Padma, Y.-M. Lin, C.-Y. Huang, J. Cell. Physiol. 234 (2019) 20443–20452.

[147]Z. Safaeinejad, M. Nabiuni, M. Peymani, K. Ghaedi, M.H. Nasr-Esfahani, H. Baharvand, Eur. J. Cell Biol. 96 (2017) 665–672.

[148]F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, S.-I. Tanuma, Curr. Aging Sci. 4 (2011) 1–7.

[149]J. Li, C.-X. Zhang, Y.-M. Liu, K.-L. Chen, G. Chen, Oncotarget 8 (2017) 65717–65729.

[150]K.P. Goh, H.Y. Lee, D.P. Lau, W. Supaat, Y.H. Chan, A.F.Y. Koh, Int. J. Sport Nutr. Exerc. Metab. 24 (2014) 2–13.

[151]C.E. Park, M.-J. Kim, J.H. Lee, B.-I. Min, H. Bae, W. Choe, S.-S. Kim, J. Ha, Exp. Mol. Med. 39 (2007) 222–229.

[152]P. Zhang, Y. Li, Y. Du, G. Li, L. Wang, F. Zhou, Transplant. Proc. 48 (2016) 3378–3386.

[153]K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer, D.A. Sinclair, Nature 425 (2003) 191–196.

[154]S.-C. Hsu, S.-M. Huang, A. Chen, C.-Y. Sun, S.-H. Lin, J.-S. Chen, S.-T. Liu, Y.-J. Hsu, Int. J. Biochem. Cell Biol. 53 (2014) 361–371.

[155]J. Miranda, M.P. Portillo, J.A. Madrid, N. Arias, M.T. Macarulla, M. Garaulet, Br. J. Nutr. 110 (2013) 1421–1428.

[156]F. Pifferi, A. Dal-Pan, S. Languille, F. Aujard, Oxid. Med. Cell. Longev. 2013 (2013) 187301.

[157]J.R. Leheste, G. Torres, Front. Mol. Neurosci. 8 (2015) 61.

[158]L. Sun, Y. Wang, Y. Song, X.-R. Cheng, S. Xia, M.R.T. Rahman, Y. Shi, G. Le, Biochem. Biophys. Res. Commun. 458 (2015) 86–91.

[159]J.-A. Lee, S.K. Ha, E. Cho, I. Choi, Nutrients 7 (2015) 9650–9661.

[160]J.J. Johnson, M. Nihal, I.A. Siddiqui, C.O. Scarlett, H.H. Bailey, H. Mukhtar, N. Ahmad, Mol. Nutr. Food Res. 55 (2011) 1169–1176.

[161]K.R. Polley, N. Jenkins, P. O’Connor, K. McCully, Appl. Physiol. Nutr. Metab. 41 (2016) 26–32.

[162]W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu, J. Pan, Metab. Brain Dis. 28 (2013) 585–595.

[163]Y. Xu, C. Zhang, F. Wu, X. Xu, G. Wang, M. Lin, Y. Yu, Y. An, J. Pan, Metab. Brain Dis. 31 (2016) 837–848.

[164]E.L. Wightman, J.L. Reay, C.F. Haskell, G. Williamson, T.P. Dew, D.O. Kennedy, Br. J. Nutr. 112 (2014) 203–213.

[165]Y. Zhu, B. Feng, S. He, Z. Su, G. Zheng, Phytomedicine 40 (2018) 20–26.