Maritech® Fucus vesiculosus Extract




  • Supports general immune health*
  • Supports joint health*
  • Supports gastrointestinal health*


Fucus vesiculosus is an edible brown seaweed (i.e. a marine algae) that grows in the cold waters of the North Atlantic ocean. F. vesiculosus is considered to be a superfood because of its high content of nutrients and minerals, including potassium, calcium, magnesium, sulfur and iodine. F. vesiculosus is also a rich source of fucoidan, as well as being a source of polyphloroglucinol, alginate, and mannitol. Much of the scientific research supporting the health benefits of F. vesiculosus has focused on fucoidan. Fucoidans occur naturally in the cell walls of brown seaweeds, where they act as defense compounds, protecting brown seaweeds from environmental challenges. Fucoidans are a family of structurally related compounds that vary in the degrees of sulfation and acetylation—fucoidans from different species of brown algae have slightly different structures and properties. The unique fucoidan found in F. vesiculosus seaweed is highly sulfated (about 23% by weight sulfates), with a backbone containing predominantly fucose, and about 8% non-sulfur minerals. Fucoidan extracted from F. vesiculosus supports immune function, stem cells, joint and gastrointestinal health[1].*


Maritech® Fucus vesiculosus Extract is backed by strong science; it has been used in human clinical studies for supporting immune health, stem cells, joint health, and gut health.

Maritech® Fucus vesiculosus Extract undergoes a proprietary extraction process resulting in an extract standardized to contain not less than 85% fucoidan.

Maritech® Fucus vesiculosus Extract is grown in the pristine ocean waters of Nova Scotia and Brittany, where it is harvested in an environmentally sustainable basis. The extract is produced by Marinova Pty. Ltd, a world leader in the research and sustainability of brown seaweed extracts. 

Maritech® Fucus vesiculosus Extract is GRAS and has novel food approval in the EU. It is non-GMO, gluten-free, vegan, certified Kosher & Halal, and certified organic.

Maritech® is a registered trademark of Marinova Pty. Ltd. 


Maritech® Fucus vesiculosus Extract is standardized for fucoidan, so dosing focuses on the amount of fucoidan. While fucoidan has been supplemented over a fairly wide range of doses (from less than 100 mg to multiple grams), evidence suggests a threshold response (see Neurohacker Dosing Principles), which means that, while it is dose-dependent, much of the benefits occur in the lower dose range. The dose used will be determined based on the goals of the formulation, and whether it is the only source of fucoidan or combined with another brown seaweed extract. So, for example, in Qualia Immune, the combination of Maritech® Fucus vesiculosus Extract and Maritech® Fucorich® Undaria pinnatifida Extract is used, and the goal is to support general immune health. In a comparative dose study, immune support benefits occurred at a very low dose of fucoidan, so a low dose would be used. 



  • Supports general immune health[2]
  • Support trained immunity[3,4]
  • Supports immune tolerance[5–9]
  • Supports innate immunity[2,10–13]
  • Supports adaptive immunity[2,8,10,13]
  • Supports cellular intrinsic immune defenses[14–27]        
  • Supports mucosal immunity[28–32]
  • Supports immune signaling[2,6,8,10,13,33]
  • Supports the hematopoietic stem cells that produce immune cells[34–39]
  • Supports healthy dendritic cell function[6,10]
  • Supports healthy natural killer cell function[11–13,40]
  • Supports healthy neutrophil function[2,41–48] 
  • Supports healthy macrophage function[2,49,50]
  • Supports healthy microglial function[48,51]
  • Supports healthy T cell function[2,8,10,13]
  • Supports healthy B cell function[40]

Gut microbiota

  • Supports a healthy gut microbiota[6,30,52,53]
  • Supports intestinal barrier function[30]
  • Supports healthy bowel function[54]

Bone and joint health

  • Supports joint comfort[55]
  • Supports the function of enzymes involved in connective tissue health[56]

Healthy aging

  • Supports neuroprotection[57]
  • Supports stem cell function[34,36,58]
  • Supports cells against senescence[58,59]
  • Supports metabolic health in overweight and obese adults[60]
  • Supports mitochondrial function[61–63]
  • Supports Nrf2[62,64–68]


  • Beta-glucan to support trained immunity[3]


[1] M.D. Catarino, A.M.S. Silva, S.M. Cardoso, Mar. Drugs 16 (2018).
[2] S.P. Myers, J. O’Connor, J.H. Fitton, L. Brooks, M. Rolfe, P. Connellan, H. Wohlmuth, P.A. Cheras, C. Morris, Biologics 5 (2011) 45–60.
[3] Y. Miyazaki, Y. Iwaihara, J. Bak, H. Nakano, S. Takeuchi, H. Takeuchi, T. Matsui, D. Tachikawa, Biochem. Biophys. Res. Commun. 516 (2019) 245–250.
[4] T. Takano, C. Motozono, T. Imai, K.-H. Sonoda, Y. Nakanishi, S. Yamasaki, J. Biol. Chem. 292 (2017) 16933–16941.
[5] C.-H. Yang, J.-J. Tian, W.-S. Ko, C.-J. Shih, Y.-L. Chiou, Exp. Ther. Med. 17 (2019) 3–10.
[6] M. Xue, H. Liang, X. Ji, Y. Liu, Y. Ge, L. Hou, T. Sun, Nutr. Metab. 16 (2019) 87.
[7] K. Tanaka, M. Ito, M. Kodama, M. Tomita, S. Kimura, M. Hoyano, W. Mitsuma, S. Hirono, H. Hanawa, Y. Aizawa, J. Cardiovasc. Pharmacol. Ther. 16 (2011) 79–86.
[8] H. Kim, C. Moon, E.-J. Park, Y. Jee, M. Ahn, M.B. Wie, T. Shin, Phytother. Res. 24 (2010) 399–403.
[9] T. Tian, H. Chang, K. He, Y. Ni, C. Li, M. Hou, L. Chen, Z. Xu, B. Chen, M. Ji, Int. Immunopharmacol. 75 (2019) 105823.
[10] J.-O. Jin, W. Zhang, J.-Y. Du, K.-W. Wong, T. Oda, Q. Yu, PLoS One 9 (2014) e99396.
[11] M.T. Ale, H. Maruyama, H. Tamauchi, J.D. Mikkelsen, A.S. Meyer, Int. J. Biol. Macromol. 49 (2011) 331–336.
[12] F. Atashrazm, R.M. Lowenthal, G.M. Woods, A.F. Holloway, S.S. Karpiniec, J.L. Dickinson, J. Cell. Physiol. 231 (2016) 688–697.
[13] M. Xue, H. Liang, Q. Tang, C. Xue, X. He, L. Zhang, Z. Zhang, Z. Liang, K. Bian, L. Zhang, Z. Li, Nutr. Cancer 69 (2017) 1234–1244.
[14] H. Li, J. Li, Y. Tang, L. Lin, Z. Xie, J. Zhou, L. Zhang, X. Zhang, X. Zhao, Z. Chen, D. Zuo, Virol. J. 14 (2017) 178.
[15] C. Richards, N.A. Williams, J.H. Fitton, D.N. Stringer, S.S. Karpiniec, A.Y. Park, Mar. Drugs 18 (2020).
[16] N.V. Krylova, S.P. Ermakova, V.F. Lavrov, I.A. Leneva, G.G. Kompanets, O.V. Iunikhina, M.N. Nosik, L.K. Ebralidze, I.N. Falynskova, A.S. Silchenko, T.S. Zaporozhets, Mar. Drugs 18 (2020).
[17] A. Synytsya, R. Bleha, A. Synytsya, R. Pohl, K. Hayashi, K. Yoshinaga, T. Nakano, T. Hayashi, Carbohydr. Polym. 111 (2014) 633–644.
[18] M. Baba, R. Snoeck, R. Pauwels, E. de Clercq, Antimicrob. Agents Chemother. 32 (1988) 1742–1745.
[19] J.-B. Lee, K. Hayashi, M. Hashimoto, T. Nakano, T. Hayashi, Chem. Pharm. Bull. 52 (2004) 1091–1094.
[20] M.M. Prokofjeva, T.I. Imbs, N.M. Shevchenko, P.V. Spirin, S. Horn, B. Fehse, T.N. Zvyagintseva, V.S. Prassolov, Mar. Drugs 11 (2013) 3000–3014.
[21] T.T.T. Thuy, B.M. Ly, T.T.T. Van, N. Van Quang, H.C. Tu, Y. Zheng, C. Seguin-Devaux, B. Mi, U. Ai, Carbohydr. Polym. 115 (2015) 122–128.
[22] J. Trinchero, N.M.A. Ponce, O.L. Córdoba, M.L. Flores, S. Pampuro, C.A. Stortz, H. Salomón, G. Turk, Phytother. Res. 23 (2009) 707–712.
[23] Q.-L. Sun, Y. Li, L.-Q. Ni, Y.-X. Li, Y.-S. Cui, S.-L. Jiang, E.-Y. Xie, J. Du, F. Deng, C.-X. Dong, Carbohydr. Polym. 229 (2020) 115487.
[24] K.D. Thompson, C. Dragar, Phytother. Res. 18 (2004) 551–555.
[25] K. Hayashi, T. Nakano, M. Hashimoto, K. Kanekiyo, T. Hayashi, Int. Immunopharmacol. 8 (2008) 109–116.
[26] W. Wang, J. Wu, X. Zhang, C. Hao, X. Zhao, G. Jiao, X. Shan, W. Tai, G. Yu, Sci. Rep. 7 (2017) 40760.
[27] K.I.P.J. Hidari, N. Takahashi, M. Arihara, M. Nagaoka, K. Morita, T. Suzuki, Biochem. Biophys. Res. Commun. 376 (2008) 91–95.
[28] K. Hayashi, J.-B. Lee, T. Nakano, T. Hayashi, Microbes Infect. 15 (2013) 302–309.
[29] T. Kawashima, K. Murakami, I. Nishimura, T. Nakano, A. Obata, Int. J. Mol. Med. 29 (2012) 447–453.
[30] M. Xue, X. Ji, H. Liang, Y. Liu, B. Wang, L. Sun, W. Li, Food Funct. 9 (2018) 1214–1223.
[31] M. Takahashi, K. Takahashi, S. Abe, K. Yamada, M. Suzuki, M. Masahisa, M. Endo, K. Abe, R. Inoue, H. Hoshi, Mar. Drugs 18 (2020).
[32] A.J. Cox, A.W. Cripps, P.A. Taylor, J.H. Fitton, N.P. West, Mar. Drugs 18 (2020).
[33] S.P. Myers, A.M. Mulder, D.G. Baker, S.R. Robinson, M.I. Rolfe, L. Brooks, J.H. Fitton, Biologics 10 (2016) 81–88.
[34] P.S. Frenette, L. Weiss, Blood 96 (2000) 2460–2468.
[35] J. Lee, J. Kim, C. Moon, S.-H. Kim, J.W. Hyun, J.W. Park, T. Shin, Phytother. Res. 22 (2008) 1677–1681.
[36] M.R. Irhimeh, J.H. Fitton, R.M. Lowenthal, Exp. Hematol. 35 (2007) 989–994.
[37] E.A. Sweeney, H. Lortat-Jacob, G.V. Priestley, B. Nakamoto, T. Papayannopoulou, Blood 99 (2002) 44–51.
[38] E.A. Sweeney, T. Papayannopoulou, Ann. N. Y. Acad. Sci. 938 (2001) 48–52; discussion 52–3.
[39] E.A. Sweeney, G.V. Priestley, B. Nakamoto, R.G. Collins, A.L. Beaudet, T. Papayannopoulou, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 6544–6549.
[40] H. Negishi, M. Mori, H. Mori, Y. Yamori, J. Nutr. 143 (2013) 1794–1798.
[41] E. Benlier, S. Eskiocak, F.O. Puyan, H. Kandulu, Y. Unal, H. Top, A.C. Aygit, Burns 37 (2011) 1216–1221.
[42] S.-H. Kim, J.-H. Kang, M.-P. Yang, Vet. Immunol. Immunopathol. 151 (2013) 124–131.
[43] T.A. Kuznetsova, T.P. Smolina, I.D. Makarenkova, L.A. Ivanushko, E.V. Persiyanova, S.P. Ermakova, A.S. Silchenko, T.S. Zaporozhets, N.N. Besednova, L.N. Fedyanina, S.Р. Kryzhanovsky, Mar. Drugs 18 (2020).
[44] N.Y. Anisimova, N.E. Ustyuzhanina, F.V. Donenko, M.I. Bilan, N.A. Ushakova, A.I. Usov, N.E. Nifantiev, M.V. Kiselevskiy, Biochemistry 80 (2015) 925–933.
[45] J.A. Moraes, A.C. Frony, P. Barcellos-de-Souza, M. Menezes da Cunha, T. Brasil Barbosa Calcia, C.F. Benjamim, C. Boisson-Vidal, C. Barja-Fidalgo, J. Innate Immun. 11 (2019) 330–346.
[46] H.-H. Yu, E. Chengchuan Ko, C.-L. Chang, K.S.-P. Yuan, A.T.H. Wu, Y.-S. Shan, S.-Y. Wu, Mar. Drugs 16 (2018).
[47] Y.-I. Kim, W.-S. Oh, P.H. Song, S. Yun, Y.-S. Kwon, Y.J. Lee, S.-K. Ku, C.-H. Song, T.-H. Oh, Mar. Drugs 16 (2018).
[48] G.H. Kang, B.C. Yan, G.-S. Cho, W.-K. Kim, C.H. Lee, J.H. Cho, M. Kim, I.-J. Kang, M.-H. Won, J.-C. Lee, J. Neurol. Sci. 318 (2012) 25–30.
[49] M. Tomori, T. Nagamine, T. Miyamoto, M. Iha, Mar. Drugs 17 (2019).
[50] M. El-Boshy, A. El-Ashram, E. Risha, F. Abdelhamid, E. Zahran, A. Gab-Alla, Vet. Immunol. Immunopathol. 162 (2014) 168–173.
[51] Y.-Q. Cui, Y.-J. Jia, T. Zhang, Q.-B. Zhang, X.-M. Wang, CNS Neurosci. Ther. 18 (2012) 827–833.
[52] Q. Chen, M. Liu, P. Zhang, S. Fan, J. Huang, S. Yu, C. Zhang, H. Li, Nutrition 65 (2019) 50–59.
[53] Q. Shang, X. Shan, C. Cai, J. Hao, G. Li, G. Yu, Food Funct. 7 (2016) 3224–3232.
[54] C. Sakai, S. Abe, M. Kouzuki, H. Shimohiro, Y. Ota, H. Sakinada, T. Takeuchi, T. Okura, T. Kasagi, K. Hanaki, Yonago Acta Med. 62 (2019) 14–23.
[55] S.P. Myers, J. O’Connor, J.H. Fitton, L. Brooks, M. Rolfe, P. Connellan, H. Wohlmuth, P.A. Cheras, C. Morris, Biologics 4 (2010) 33.
[56] K. Senni, F. Gueniche, A. Foucault-Bertaud, S. Igondjo-Tchen, F. Fioretti, S. Colliec-Jouault, P. Durand, J. Guezennec, G. Godeau, D. Letourneur, Arch. Biochem. Biophys. 445 (2006) 56–64.
[57] M. Alghazwi, S. Smid, S. Karpiniec, W. Zhang, Int. J. Biol. Macromol. 122 (2019) 255–264.
[58] J.H. Lee, C.W. Yun, J. Hur, S.H. Lee, Mar. Drugs 16 (2018).
[59] J.H. Lee, S.H. Lee, S.H. Choi, T. Asahara, S.-M. Kwon, Stem Cells 33 (2015) 1939–1951.
[60] D.M. Hernández-Corona, E. Martínez-Abundis, M. González-Ortiz, J. Med. Food 17 (2014) 830–832.
[61] T. Wang, M. Zhu, Z.-Z. He, Cell. Mol. Neurobiol. 36 (2016) 1257–1268.
[62] L. Zhang, J. Hao, Y. Zheng, R. Su, Y. Liao, X. Gong, L. Liu, X. Wang, Aging Dis. 9 (2018) 590–604.
[63] Y.-S. Han, J.H. Lee, S.H. Lee, Mar. Drugs 17 (2019).
[64] M.J. Ryu, H.S. Chung, Mol. Med. Rep. 14 (2016) 3255–3260.
[65] D.-Z. Zhu, Y.-T. Wang, Y.-L. Zhuo, K.-J. Zhu, X.-Z. Wang, A.-J. Liu, Arch. Pharm. Res. 43 (2020) 646–654.
[66] L. Wang, T.U. Jayawardena, H.-W. Yang, H.G. Lee, M.-C. Kang, K.K.A. Sanjeewa, J.Y. Oh, Y.-J. Jeon, Antioxidants (Basel) 9 (2020).
[67] I.P.S. Fernando, M.K.H.M. Dias, D.M.D. Madusanka, E.J. Han, M.J. Kim, Y.-J. Jeon, K. Lee, S.H. Cheong, Y.S. Han, S.R. Park, G. Ahn, Antioxidants (Basel) 9 (2020).
[68] Y.-Q. Wang, J.-G. Wei, M.-J. Tu, J.-G. Gu, W. Zhang, Int. J. Mol. Sci. 19 (2018).